background preloader

Many-worlds interpretation

Many-worlds interpretation
The quantum-mechanical "Schrödinger's cat" paradox according to the many-worlds interpretation. In this interpretation, every event is a branch point; the cat is both alive and dead, even before the box is opened, but the "alive" and "dead" cats are in different branches of the universe, both of which are equally real, but which do not interact with each other.[1] The many-worlds interpretation is an interpretation of quantum mechanics that asserts the objective reality of the universal wavefunction and denies the actuality of wavefunction collapse. Many-worlds implies that all possible alternate histories and futures are real, each representing an actual "world" (or "universe"). In lay terms, the hypothesis states there is a very large—perhaps infinite[2]—number of universes, and everything that could possibly have happened in our past, but did not, has occurred in the past of some other universe or universes. Outline[edit] Interpreting wavefunction collapse[edit] Probability[edit] where

Executive Success Programs Nancy Salzman Nancy Salzman has over 25 years of intensive study and practice in the fields of healthcare, human potential, and human empowerment. Fueled by a strong desire to help people, Ms. Salzman began her career as a psychiatric nurse. Ms. After almost two decades of searching for unique, permanent therapeutic solutions to human performance problems, Ms. As president of ESP, Ms. Hidden variable theory Albert Einstein, the most famous proponent of hidden variables, objected to the fundamentally probabilistic nature of quantum mechanics,[1] and famously declared "I am convinced God does not play dice".[2] Einstein, Podolsky, and Rosen argued that "elements of reality" (hidden variables) must be added to quantum mechanics to explain entanglement without action at a distance.[3][4] Later, Bell's theorem would suggest (in the opinion of most physicists and contrary to Einstein's assertion) that local hidden variables of certain types are impossible. The most famous nonlocal theory is de Broglie-Bohm theory. Motivation[edit] Under the orthodox Copenhagen interpretation, quantum mechanics is nondeterministic, meaning that it generally does not predict the outcome of any measurement with certainty. In other words, it is conceivable that the Copenhagen interpretation of quantum mechanics is an incomplete description of nature. "God does not play dice"[edit] Bohr-Einstein debates[edit] .

Copenhagen interpretation The Copenhagen interpretation is one of the earliest and most commonly taught interpretations of quantum mechanics.[1] It holds that quantum mechanics does not yield a description of an objective reality but deals only with probabilities of observing, or measuring, various aspects of energy quanta, entities that fit neither the classical idea of particles nor the classical idea of waves. The act of measurement causes the set of probabilities to immediately and randomly assume only one of the possible values. This feature of mathematics is known as wavefunction collapse. The essential concepts of the interpretation were devised by Niels Bohr, Werner Heisenberg and others in the years 1924–27. According to John Cramer, "Despite an extensive literature which refers to, discusses, and criticizes the Copenhagen interpretation of quantum mechanics, nowhere does there seem to be any concise statement which defines the full Copenhagen interpretation. Background[edit] Origin of the term[edit] 1. .

When the multiverse and many-worlds collide - physics-math - 01 June 2011 Read full article Continue reading page |1|2 Editorial: "God deserves a cosmological explanation" TWO of the strangest ideas in modern physics - that the cosmos constantly splits into parallel universes in which every conceivable outcome of every event happens, and the notion that our universe is part of a larger multiverse - have been unified into a single theory. This solves a bizarre but fundamental problem in cosmology and has set physics circles buzzing with excitement, as well as some bewilderment. The problem is the observability of our universe. Cosmologists reconcile this seeming contradiction by assuming that the superposition eventually "collapses" to a single state. This problem is captured in the famous thought experiment of Schrödinger's cat. Physicists call this process "decoherence". In the case of something as large as a cat, that may be possible in Schrödinger's theoretical sealed box. New Scientist Not just a website! More From New Scientist More from the web

Keith Raniere, Conceptual Founder of Executive Success Programs and NXIVM Ensemble interpretation The ensemble interpretation, or statistical interpretation of quantum mechanics, is an interpretation that can be viewed as a minimalist interpretation; it is a quantum mechanical interpretation that claims to make the fewest assumptions associated with the standard mathematical formalization. At its heart, it takes to the fullest extent the statistical interpretation of Max Born for which he won the Nobel Prize in Physics.[1] The interpretation states that the wave function does not apply to an individual system – or for example, a single particle – but is an abstract mathematical, statistical quantity that only applies to an ensemble of similarly prepared systems or particles. Probably the most notable supporter of such an interpretation was Albert Einstein: To date, probably the most prominent advocate of the ensemble interpretation is Leslie E. Ballentine, Professor at Simon Fraser University, and writer of the graduate-level textbook "Quantum Mechanics, A Modern Development".[3]

70 Reminders to Help You Break Any Barrier I am pleased to introduce this guest article by a new friend John, the creator of HiLife2B, where he hopes to inspire people and to help them achieve their dreams. Follow him on Twitter: @janyasor 1. Believe that even the smallest compliment can save someone’s life 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70.

Calculating Water Footprints: How Much Water in Your Food? The environmental impact of food production in terms of contribution to climate change is well documented. Fertilizer use, soil degradation, and transportation from far flung farms to the table are all sources of greenhouse gas emissions. However, food production also has a steep water footprint. In 2009, the Food Ethics Council (FEC) declared in a report that food products should come with water footprint information in addition to carbon information. As a general rule of thumb, crops like sugar and vegetables are more water-intensive than cereals. Another recently released report by WRAP and WWF examined how much water is wasted in the UK when food is thrown away. The report focuses on the water and carbon footprint of wasted household food and drink in the UK for the first time. According to the Water Footprint Network the water footprint of US citizens is 2840 cubic meter per year per capita. Scroll down to see comments.

Executive Success Programs Think back on your life and all of the things you wanted to do but never did. Perhaps you're achieving your goals and would like to progress faster. What’s stopping you? When you look around, you see people who are living up to their full potential and making their dreams come true. Emotion is the internal force that empowers us to live our lives to the fullest and to achieve the success we desire and deserve. Our programs facilitate this by developing and energizing your emotional foundation. Very often these self-imposed limitations have become so familiar to us that we are not even aware they are there. Our programs employ a unique, patent-pending technology called Rational Inquiry™, which allows you to re-examine and re-incorporate perceptions that may be the foundation of self-imposed limitations. Strengthening your emotional constitution brings about inner breakthroughs that can dramatically raise the level of your performance and achievement.

Objective collapse theory Objective collapse theories are an approach to the interpretational problems of quantum mechanics. They are realistic, indeterministic and reject hidden variables. The approach is similar to the Copenhagen interpretation, but more firmly objective. The most well-known examples of such theories are: Compared to other approaches[edit] Collapse theories stand in opposition to many-worlds interpretation theories, in that they hold that a process of wavefunction collapse curtails the branching of the wavefunction and removes unobserved behaviour. Variations[edit] Objective collapse theories regard the present formalism of quantum mechanics as incomplete, in some sense. Collapse is found "within" the evolution of the wavefunction, often by modifying the equations to introduce small amounts of non-linearity. Objections[edit] The fact that these theories seek to extend the formalism is considered as violation of the principle of parsimony by some. GRW collapse theories have unique problems.

Modality effect The modality effect is a term used in experimental psychology, most often in the fields dealing with memory and learning, to refer to how learner performance depends on the presentation mode of studied items. Description[edit] For serial recall, the modality effect is seen in an increased memory span for auditorally presented lists. Memory span is defined as the maximum number of items that participants correctly recall in 50% of trials. Some studies use the term modality to refer to a general difference in performance based upon the mode of presentation. Bennet Murdock used a basic free recall paradigm, with different types of lists, mixing auditorally and visually presented words. Glenberg[9] showed that the modality effect is also prevalent in long term memory, showing that to-be-remembered word pairs that are separated by distractor activity are better recalled if presented auditorally vs. visually. Several terms have been used to refer to the modality effect on recency.

Food and water for the poor -- not political lies via MD, GG and MS, I read an interesting interview with the Chairman of Nestle in which he says: There is no market for how that water is allocated and used. The result is waste, overuse and misuse of the water we have. If we don't do something about that, Mr. Brabeck-Letmathe fears, we will soon run ourselves dry.[snip]"If oil becomes scarce," he notes, "the oil price goes up. He makes two important points (that I have made many times on this blog and in my book). First, political interference has distorted food markets (via artificial stimulation of demand for biofuels and artificial blockages on GMOs), which is bad for farmers and the poor but good for food companies with political connections. Second, we need better markets for water, to ensure that it goes to highest and best use instead of political cronies with little need to be efficient (let alone care for the environment, human rights, etc.)

Keith Raniere and Nancy Salzman offer Executive Success Programs at NXIVM

Related: