Brane cosmology
Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory. Brane and bulk[edit] The central idea is that the visible, four-dimensional universe is restricted to a brane inside a higher-dimensional space, called the "bulk" (also known as "hyperspace"). If the additional dimensions are compact, then the observed universe contains the extra dimensions, and then no reference to the bulk is appropriate.

Shape of the Universe
The shape of the universe is the local and global geometry of the universe, in terms of both curvature and topology (though, strictly speaking, it goes beyond both). When physicsist describe the universe as being flat or nearly flat, they're talking geometry: how space and time are warped according to general relativity. When they talk about whether it open or closed, they're referring to its topology.[1] Although the shape of the universe is still a matter of debate in physical cosmology, based on the recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements "We now know that the universe is flat with only a 0.4% margin of error", according to NASA scientists. [2] Theorists have been trying to construct a formal mathematical model of the shape of the universe. In formal terms, this is a 3-manifold model corresponding to the spatial section (in comoving coordinates) of the 4-dimensional space-time of the universe.

Membrane (M-theory)
In string theory and related theories, D-branes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a D-brane. The letter "D" in D-brane refers to the fact that we impose a certain mathematical condition on the system known as the Dirichlet boundary condition. The study of D-branes has led to important results, such as the anti-de Sitter/conformal field theory correspondence, which has shed light on many problems in quantum field theory. See also[edit] References[edit]

String theory landscape
The string theory landscape refers to the huge number of possible false vacua in string theory.[1] The large number of theoretically allowed configurations has prompted suggestions that certain physical mysteries, particularly relating to the fine-tuning of constants like the cosmological constant or the Higgs boson mass, may be explained not by a physical mechanism but by assuming that many different vacua are physically realized.[2] The anthropic landscape thus refers to the collection of those portions of the landscape that are suitable for supporting intelligent life, an application of the anthropic principle that selects a subset of the otherwise possible configurations. Anthropic principle[edit] Bayesian probability[edit]

Dyson's eternal intelligence
The intelligent beings would begin by storing a finite amount of energy. They then use half (or any fraction) of this energy to power their thought. When the energy gradient created by unleashing this fraction of the stored fuel was exhausted, the beings would enter a state of zero-energy-consumption until the universe cooled. Once the universe had cooled sufficiently, half of the remaining half (one quarter of the original energy) of the intelligent beings' fuel reserves would once again be released, powering a brief period of thought once more.
CP violation
It plays an important role both in the attempts of cosmology to explain the dominance of matter over antimatter in the present Universe, and in the study of weak interactions in particle physics. CP-symmetry[edit] The idea behind parity symmetry is that the equations of particle physics are invariant under mirror inversion. This leads to the prediction that the mirror image of a reaction (such as a chemical reaction or radioactive decay) occurs at the same rate as the original reaction. Parity symmetry appears to be valid for all reactions involving electromagnetism and strong interactions. Until 1956, parity conservation was believed to be one of the fundamental geometric conservation laws (along with conservation of energy and conservation of momentum).

Eternal inflation
Eternal inflation is predicted by many different models of cosmic inflation. MIT professor Alan H. Guth proposed an inflation model involving a "false vacuum" phase with positive vacuum energy. Parts of the Universe in that phase inflate, and only occasionally decay to lower-energy, non-inflating phases or the ground state. In chaotic inflation, proposed by physicist Andrei Linde, the peaks in the evolution of a scalar field (determining the energy of the vacuum) correspond to regions of rapid inflation which dominate. Chaotic inflation usually eternally inflates,[1] since the expansions of the inflationary peaks exhibit positive feedback and come to dominate the large-scale dynamics of the Universe.

Eternal return
Eternal return (also known as "eternal recurrence") is a concept that the universe has been recurring, and will continue to recur, in a self-similar form an infinite number of times across infinite time or space. The concept is found in Indian philosophy and in ancient Egypt and was subsequently taken up by the Pythagoreans and Stoics. With the decline of antiquity and the spread of Christianity, the concept fell into disuse in the Western world, with the exception of Friedrich Nietzsche, who connected the thought to many of his other concepts, including amor fati. In addition, the philosophical concept of eternal recurrence was addressed by Arthur Schopenhauer. It is a purely physical concept, involving no supernatural reincarnation, but the return of beings in the same bodies. Time is viewed as being not linear but cyclical.

Calabi–Yau manifold
A 2D slice of the 6D Calabi-Yau quintic manifold. Calabi–Yau manifolds are complex manifolds that are higher-dimensional analogues of K3 surfaces. They are sometimes defined as compact Kähler manifolds whose canonical bundle is trivial, though many other similar but inequivalent definitions are sometimes used. They were named "Calabi–Yau spaces" by Candelas et al. (1985) after E. Calabi (1954, 1957) who first studied them, and S.