background preloader

Charles Limb: Your brain on improv

Charles Limb: Your brain on improv

The Science of "Chunking," Working Memory, and How Pattern Recognition Fuels Creativity by Maria Popova “Generating interesting connections between disparate subjects is what makes art so fascinating to create and to view… We are forced to contemplate a new, higher pattern that binds lower ones together.” It seems to be the season for fascinating meditations on consciousness, exploring such questions as what happens while we sleep, how complex cognition evolved, and why the world exists. The process of combining more primitive pieces of information to create something more meaningful is a crucial aspect both of learning and of consciousness and is one of the defining features of human experience. What makes the difference, Bor argues, is a concept called chunking, which allows us to hack the limits of our working memory — a kind of cognitive compression mechanism wherein we parse information into chunks that are more memorable and easier to process than the seemingly random bits of which they’re composed. This young man had, essentially, mastered exponential chunking.

Electroencephalography Simultaneous video and EEG recording of two guitarists improvising. Electroencephalography (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain.[1] In clinical contexts, EEG refers to the recording of the brain's spontaneous electrical activity over a short period of time, usually 20–40 minutes, as recorded from multiple electrodes placed on the scalp. Diagnostic applications generally focus on the spectral content of EEG, that is, the type of neural oscillations that can be observed in EEG signals. EEG is most often used to diagnose epilepsy, which causes obvious abnormalities in EEG readings.[2] It is also used to diagnose sleep disorders, coma, encephalopathies, and brain death. History[edit] Hans Berger In 1934, Fisher and Lowenback first demonstrated epileptiform spikes. In 1947, The American EEG Society was founded and the first International EEG congress was held.

Will Potter: The secret US prisons you've never heard of before | TED Talk Subtitles and Transcript Father Daniel Berrigan once said that "writing about prisonersis a little like writing about the dead."I think what he meant is that we treat prisoners as ghosts.They're unseen and unheard.It's easy to simply ignore themand it's even easier when the government goes to great lengths to keep them hidden. As a journalist, I think these storiesof what people in power do when no one is watching,are precisely the stories that we need to tell.That's why I began investigatingthe most secretive and experimental prison units in the United States,for so-called "second-tier" terrorists.The government calls these units Communications Management Units or CMUs.Prisoners and guards call them "Little Guantanamo."They are islands unto themselves.But unlike Gitmo they exist right here, at home,floating within larger federal prisons. There's an estimated 60 to 70 prisoners here,and they're overwhelmingly Muslim.They include people like Dr. So, why was he moved? (Laughter) For the record, I'm not. Thank you.

The Brain Needs Downs to Have Ups Four neurochemicals cause happiness : endorphins, dopamine , oxytocin and serotonin. Each evolved to do a different job. When you know what the job is, you know why your happy chemicals can't be on all the time. 1. 2. Happy chemicals evolved to alert us to survival-relevant information around us. Yet it's natural to desire more happy chemicals and to do everything possible to stimulate them.

Brain Atlas - Introduction The central nervous system (CNS) consists of the brain and the spinal cord, immersed in the cerebrospinal fluid (CSF). Weighing about 3 pounds (1.4 kilograms), the brain consists of three main structures: the cerebrum, the cerebellum and the brainstem. Cerebrum - divided into two hemispheres (left and right), each consists of four lobes (frontal, parietal, occipital and temporal). – closely packed neuron cell bodies form the grey matter of the brain. Cerebellum – responsible for psychomotor function, the cerebellum co-ordinates sensory input from the inner ear and the muscles to provide accurate control of position and movement. Brainstem – found at the base of the brain, it forms the link between the cerebral cortex, white matter and the spinal cord. Other important areas in the brain include the basal ganglia, thalamus, hypothalamus, ventricles, limbic system, and the reticular activating system. Basal Ganglia Thalamus and Hypothalamus Ventricles Limbic System Reticular Activating System Glia

Diffusion MRI Diffusion MRI (or dMRI) is a magnetic resonance imaging (MRI) method which came into existence in the mid-1980s.[1][2][3] It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not free, but reflects interactions with many obstacles, such as macromolecules, fibers, membranes, etc. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state. The first diffusion MRI images of the normal and diseased brain were made public in 1985.[4][5] Since then, diffusion MRI, also referred to as diffusion tensor imaging or DTI (see section below) has been extraordinarily successful. In diffusion weighted imaging (DWI), the intensity of each image element (voxel) reflects the best estimate of the rate of water diffusion at that location. Diffusion[edit] Given the concentration and flux where D is the diffusion coefficient.

Functional magnetic resonance imaging Researcher checking fMRI images Functional magnetic resonance imaging or functional MRI (fMRI) is a functional neuroimaging procedure using MRI technology that measures brain activity by detecting associated changes in blood flow.[1] This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases. The primary form of fMRI uses the Blood-oxygen-level dependent (BOLD) contrast,[2] discovered by Seiji Ogawa. The procedure is similar to MRI but uses the change in magnetization between oxygen-rich and oxygen-poor blood as its basic measure. FMRI is used both in the research world, and to a lesser extent, in the clinical world. Overview[edit] The fMRI concept builds on the earlier MRI scanning technology and the discovery of properties of oxygen-rich blood. History[edit] Three studies in 1992 were the first to explore using the BOLD contrast in humans. Physiology[edit]

Neuron All neurons are electrically excitable, maintaining voltage gradients across their membranes by means of metabolically driven ion pumps, which combine with ion channels embedded in the membrane to generate intracellular-versus-extracellular concentration differences of ions such as sodium, potassium, chloride, and calcium. Changes in the cross-membrane voltage can alter the function of voltage-dependent ion channels. If the voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives. Neurons do not undergo cell division. In most cases, neurons are generated by special types of stem cells. A type of glial cell, called astrocytes (named for being somewhat star-shaped), have also been observed to turn into neurons by virtue of the stem cell characteristic pluripotency. Overview[edit] Anatomy and histology[edit]

Charles Limb studies the neurology of music and creativity. In this TED talk he shows fMRI contrast maps of his experiments with people playing memorised music versus people improvising music. He shows that the activity in the lateral prefrontal cortex, which is involved in self-monitoring, lowers. And activity in the medial prefrontal cortex goes up. Next he shows what happens when musicians improvise together. The language areas, i.e. Broca's area, became more active. The third experiment is about memorised rap versus freestyle rap: then you see activity in the visual areas and motor coordination areas, so lots of brains areas aree active in creative rapping. by kaspervandenberg Jan 9

Related:  TFreetimeTed Talkseducation reformLearningHuman ScienceTed Talks