background preloader

Systems theory

Systems theory
Systems theory is the interdisciplinary study of systems in general, with the goal of elucidating principles that can be applied to all types of systems at all nesting levels in all fields of research.[citation needed] The term does not yet have a well-established, precise meaning, but systems theory can reasonably be considered a specialization of systems thinking; alternatively as a goal output of systems science and systems engineering, with an emphasis on generality useful across a broad range of systems (versus the particular models of individual fields). A central topic of systems theory is self-regulating systems, i.e. systems self-correcting through feedback. Self-regulating systems are found in nature, including the physiological systems of our body, in local and global ecosystems, and in climate—and in human learning processes (from the individual on up through international organizations like the UN).[3] Overview[edit] Examples of applications[edit] Systems biology[edit]

http://en.wikipedia.org/wiki/Systems_theory

Related:  Ludwig von BertalanffySystem Theory

Homeostasis Homeostasis, also spelled homoeostasis (from Greek: ὅμοιος homœos, "similar" and στάσις stasis, "standing still"), is the property of a system in which variables are regulated so that internal conditions remain stable and relatively constant. Examples of homeostasis include the regulation of temperature and the balance between acidity and alkalinity (pH). It is a process that maintains the stability of the human body's internal environment in response to changes in external conditions. The concept was described by French physiologist Claude Bernard in 1865 and the word was coined by Walter Bradford Cannon in 1926.[1] Although the term was originally used to refer to processes within living organisms, it is frequently applied to automatic control systems such as thermostats.

Systems engineering Systems engineering techniques are used in complex projects: spacecraft design, computer chip design, robotics, software integration, and bridge building. Systems engineering uses a host of tools that include modeling and simulation, requirements analysis and scheduling to manage complexity. Systems engineering is an interdisciplinary field of engineering that focuses on how to design and manage complex engineering systems over their life cycles. Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability and many other disciplines necessary for successful system development, design, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work-processes, optimization methods, and risk management tools in such projects. The systems engineering process is a discovery process that is quite unlike a manufacturing process.

Glossary of systems theory A glossary of terms as relating to systems theory.[1] A[edit] B[edit] General Systems Theory © 1993, David S. Walonick, Ph.D. General systems theory was originally proposed by biologist Ludwig von Bertalanffy in 1928. Since Descartes, the "scientific method" had progressed under two related assumptions. Population dynamics Map of population trends of native and invasive species of jellyfish[1] Increase (high certainty) Increase (low certainty) Stable/variable Decrease No data

Steady state In systems theory, a system in a steady state has numerous properties that are unchanging in time. This means that for those properties p of the system, the partial derivative with respect to time is zero: The concept of steady state has relevance in many fields, in particular thermodynamics, economics, and engineering. Steady state is a more general situation than dynamic equilibrium. If a system is in steady state, then the recently observed behavior of the system will continue into the future. In stochastic systems, the probabilities that various states will be repeated will remain constant.

Conceptual model A conceptual model is a model made of the composition of concepts, which are used to help people know, understand, or simulate a subject the model represents. Some models are physical objects; for example, a toy model which may be assembled, and may be made to work like the object it represents. The term conceptual model may be used to refer to models which are formed after a conceptualization (generalization)[1] process in the mind. Conceptual models represent human intentions or semantics[citation needed][dubious ].

Systems - A Journey Along the Way Systems A Journey Along theWay Welcome to a journey in the realm of systems. The journey is still unfolding as this web site continues to evolve over time. Yet, even with the endless changes, there continues to be a connection, in one fashion or another, with systems. And, I continue to find that the lens which provides a systems perspective is the most revealing of understanding found to date.

Related:  Systems Theoriessystemagazin