background preloader

Emergence

Emergence
In philosophy, systems theory, science, and art, emergence is a process whereby larger entities, patterns, and regularities arise through interactions among smaller or simpler entities that themselves do not exhibit such properties. Emergence is central in theories of integrative levels and of complex systems. For instance, the phenomenon life as studied in biology is commonly perceived as an emergent property of interacting molecules as studied in chemistry, whose phenomena reflect interactions among elementary particles, modeled in particle physics, that at such higher mass—via substantial conglomeration—exhibit motion as modeled in gravitational physics. Neurobiological phenomena are often presumed to suffice as the underlying basis of psychological phenomena, whereby economic phenomena are in turn presumed to principally emerge. In philosophy, emergence typically refers to emergentism. In philosophy[edit] Main article: Emergentism Definitions[edit] Strong and weak emergence[edit]

http://en.wikipedia.org/wiki/Emergence

Related:  Complex SystemsrisullySWARM BEHAVIOURChaosmedia about

Why we hate Complexity Natural and social systems are complex — that is, not entirely knowable, unpredictable, resistant to cause-and-effect analysis, in a word, mysterious. For our first three million years on Earth we humans, like every other species on the planet, accepted that mystery. We adapted rather than trying to change our environment. We evolved by learning to accommodate ourselves to our environment. Self-propelled particles SPP models predict robust emergent behaviours occur in swarms independent of the type of animal that is in the swarm. SPP models predict that swarming animals share certain properties at the group level, regardless of the type of animals in the swarm.[6] Swarming systems give rise to emergent behaviours which occur at many different scales, some of which are turning out to be both universal and robust. It has become a challenge in theoretical physics to find minimal statistical models that capture these behaviours.[7][8][9] Overview[edit]

Strong emergence Snowflakes forming complex symmetrical patterns is an example of emergence in a physical system. In philosophy, systems theory, science, and art, emergence is the way complex systems and patterns arise out of a multiplicity of relatively simple interactions. Emergence is central to the theories of integrative levels and of complex systems. Biology can be viewed as an emergent property of the laws of chemistry which, in turn, can be viewed as an emergent property of particle physics. Ideal chain An ideal chain (or freely-jointed chain) is the simplest model to describe polymers, such as nucleic acids and proteins. It only assumes a polymer as a random walk and neglects any kind of interactions among monomers. Although it is simple, its generality gives us some insights about the physics of polymers.

How Science Turned a Struggling Pro Skier Into an Olympic Medal Contender - Wired Science Saslong.org/R.Perathoner Steven Nyman is poised at the starting gate, alert, coiled, ready. A signal sounds: three even tones followed by a single, more urgent pitch, sending Nyman kicking onto the Val Gardena downhill ski course. He pushes five times with his poles, accelerating as quickly as possible, stabbing the snow frantically. He skates forward with abbreviated strokes, neon green boots moving up and down, his focus on building as much momentum as possible. Nyman is feeling good.

Complexity: It’s Not That Simple Complexity theory has been around for a generation now, but most people don’t understand it. I often read or listen to consultants, ‘experts’ and media people who proffer ludicrously simplistic ‘solutions’ to complex predicaments. Since it seems most people would prefer things to be simple, these ‘experts’ always seem to have an uncritical audience. Emergentism In philosophy, emergentism is the belief in emergence, particularly as it involves consciousness and the philosophy of mind, and as it contrasts (or not) with reductionism. A property of a system is said to be emergent if it is in some sense more than the "sum" of the properties of the system's parts. An emergent property is said to be dependent on some more basic properties (and their relationships and configuration), so that it can have no separate existence. However, a degree of independence is also asserted of emergent properties, so that they are not identical to, or reducible to, or predictable from, or deducible from their bases.

Synergy Synergy is the interaction of multiple elements in a system to produce an effect different from or greater than the sum of their individual effects. The term synergy comes from the Greek word synergia συνέργεια from synergos, συνεργός, meaning "working together". Definitions and usages[edit] In the natural world, synergistic phenomena are ubiquitous, ranging from physics (for example, the different combinations of quarks that produce protons and neutrons) to chemistry (a popular example is water, a compound of hydrogen and oxygen), to the cooperative interactions among the genes in genomes, the division of labor in bacterial colonies, the synergies of scale in multi-cellular organisms, as well as the many different kinds of synergies produced by socially-organized groups, from honeybee colonies to wolf packs and human societies: compare stigmergy, a mechanism of indirect coordination between agents or actions that results in the self-assembly of complex systems.

Related:  ScienceComplexSystemsThemesemergenceEmergencePsychology