background preloader

Physics Simulations and Artwork

Physics Simulations and Artwork
Here is a 3D view of a hydrogren atom in the 4f state. The left image was made in C++ using a technique described by Krzysztof Marczak to make it volumetric like a cloud of smoke. The right image was made in Mathematica by adding 2D cross-sectional layers. The animations were made in POV-Ray using DF3 density files. The right animation shows what a "12o" orbital might look like. POV-Ray has a built-in internal function for the 3d orbital: // runtime: 4 seconds camera{location 16*z look_at 0} #declare P=function{internal(53)}; #declare P0=P(0,3,0,0); box{-8,8 pigment{rgbt t} hollow interior{media{emission 0.5 density{function{(P(x,y,z,0)-1.2)/(P0-1.2)} color_map{[0 rgb 0][1 rgb 1]}}}}} Links Atomic Orbital - time-dependant hydrogen atom simulation, by ?

Usenet Physics FAQ Version Date: February 2018 This list of answers to frequently asked questions in physics was created by Scott Chase in 1992. Its purpose was to provide good answers to questions that had been discussed often in the sci.physics and related Internet news groups. The articles in this FAQ are based on those discussions and on information from good reference sources. Most of the entries that you'll find here were written in the days when the Internet was brand new. So because of their age, the FAQ entries that you'll find here have a great deal of academic credibility—but they are not always perfect and complete. This document is copyright. General Physics Particle and Nuclear Physics Quantum Physics Relativity and Cosmology Speed of Light Special Relativity General Relativity and Cosmology Black Holes Reference Topics There are many other places where you may find answers to your question. This FAQ is currently available from these web sites: Australia: England: Netherlands:

Amazing Scanning Electron Microscope Photos Amazing Scanning Electron Microscope Photos All these pictures are from the book 'Microcosmos,' created by Brandon Brill from London. This book includes many scanning electron microscope (SEM) images of insects, humanbody parts and household items. These are the most amazing images of what is too small tosee with the naked eye. 2-2-11 An ant, Formica fusca, holding a microchip Surface of an Erasable Programmable Read-Only Memory silicon microchip Eyelash hairs growing from the surface of human skin The surface of a strawberry Bacteria on the surface of a human tongue Human sperm (spermatozoa) Nylon hooks and loops of Velcro Household dust: includes long hairs of cat fur, twisted synthetic and woolen fibers, serrated insect scales, a pollen grain, and plant and insect remains The weave of nylon stocking fibers The head of a mosquito Head louse clinging to a human hair Eight eyes (two groups of four) on the head of a tarantula Cut human hairs and shaving foam between two razor blades Mushrooms spores

100,000 Stars Mozilla Firefox (Build 20120905151427) Feynmann Diagrams La théorie des perturbations est un outil extrêmement pratique dans le calcul des probabilités des interactions dites faibles, dans un cadre classique (non relativiste). Par contre, lorsque l'on inclut à ce type d'interaction des particules fortement relativistes, cette théorie procure des résultats beaucoup trop compliqués à calculer, d'où l'intérêt de développer un nouvel outil permettant d'appliquer cette théorie des perturbations aux cas relativistes. Cet outil porte aujourd’hui le nom de diagramme de Feynman. Bien qu'ils permettent de visualiser les interactions entre les particules, les diagrammes de Feynman sont bien plus qu'une simple représentation schématique. Une grande partie de cet ouvrage traite de l'interaction entre deux électrons (ou positrons). Théorie des perturbations invariantes La matrice de diffusion S Supposons que l'on a un système composé de n particules qui interagissent ensemble. où ψ'=exp[iH0t]. Cette relation nous permet donc de définir la matrice S Les noeuds

This is What Happens When You Run Water Through a 24hz Sine Wave What!? How is this even possible? Because science, my friends. Brusspup’s (previously) latest video explores what happens when a stream of water is exposed to an audio speaker producing a loud 24hz sine wave. Run the rubber hose down past the speaker so that the hose touches the speaker. Brusspup did a similar experiment last year where it looked as if the water was flowing in reverse.

Gerard ’t Hooft, Theoretical Physics as a Challenge by Gerard 't Hooft Note: This web site will soon be removed from its present address. An updated and renewed version is available at: This is a web site for young students - and anyone else - who are (like me) thrilled by the challenges posed by real science, and who are - like me - determined to use their brains to discover new things about the physical world that we are living in. In short, it is for all those who decided to study theoretical physics, in their own time. It so often happens that I receive mail - well-intended but totally useless - by amateur physicists who believe to have solved the world. It should be possible, these days, to collect all knowledge you need from the internet. I can tell you of my own experiences. Theoretical Physics is like a sky scraper. Note that this site NOT meant to be very pedagogical. Languages:English is a prerequisite. Return to List Now, first things first : Algebraic equations.

Related: