New Nuclear Power

Facebook Twitter
Randy Montoya/Sandia National Laboratories The intense electrical discharge of the Z machine at Sandia National Laboratories in New Mexico is used in attempts to trigger nuclear fusion. The Z machine at Sandia National Laboratories in New Mexico discharges the most intense pulses of electrical current on Earth. Triple-threat method sparks hope for fusion Triple-threat method sparks hope for fusion
Magnetic behavior discovery could advance nuclear fusion The top of this image shows how early in the heating, magnetic fields, drawn as black lines, prevent heat from flowing easily between the two yellow laser spots. Later in the heating, as depicted on the bottom half, the moving magnetic fields continually connect and provide a channel for heat to flow between the two laser spots. This newly discovered magnetic behavior could advance nuclear fusion. Image credit: Joglekar, Thomas, Fox and BhattacharjeeANN ARBOR—Inspired by the space physics behind solar flares and the aurora, a team of researchers from the University of Michigan and Princeton has uncovered a new kind of magnetic behavior that could help make nuclear fusion reactions easier to start. Fusion is widely considered the ultimate goal of nuclear energy. Magnetic behavior discovery could advance nuclear fusion
Scientists Say Their Giant Laser Has Produced Nuclear Fusion : The Two-Way hide captionThe National Ignition Facility's 192 laser beams focus onto a tiny target. The National Ignition Facility's 192 laser beams focus onto a tiny target. Researchers at a laboratory in California say they've had a breakthrough in producing fusion power with a giant laser. The success comes after years of struggling to get the laser to work, and is another step in the decades-long quest for fusion energy. Omar Hurricane, a researcher at Lawrence Livermore National Laboratory, says that for the first time, they've produced significant amounts of fusion by zapping a target with their laser. Scientists Say Their Giant Laser Has Produced Nuclear Fusion : The Two-Way
Fusion reactor achieves tenfold increase in plasma confinement time The promise of fusion is immense. Its fuel is hydrogen plasma, made from the most abundant atom in the Universe, and the major byproduct is helium, an inert gas. In this era with the threat of climate change, clean alternative sources of energy are more necessary than ever. However, even after decades of research and enormous investments of money, scientists haven't succeeded in producing a working nuclear fusion plant. Nevertheless, many feel the potential payoff is worth continued investment. Fusion reactor achieves tenfold increase in plasma confinement time
Exciting MIT droplet discovery could turbocharge power plants, airships and more An On-Premise Private PaaS Top engineers at MIT say they have come across a handy effect which could seriously boost the efficiency of a critical piece of kit used in many important technologies. The piece of kit in question is the humble water condenser, which has been in use for hundreds of years: James Watt introduced it to the earliest steam engines, turning them from inefficient curiosities to the motors which powered the Industrial Revolution. Today, condensers are critical to the functioning of most powerplants - and if they can be made better, they could greatly strengthen the case for the reintroduction of airships. In essence, a condenser works by exposing steam to a cold surface. This causes the steam to turn into water, which flows down the cold surface and drips off into a collecting sump. Exciting MIT droplet discovery could turbocharge power plants, airships and more
Thorium-based nuclear power Thorium-based nuclear power Thorium-based nuclear power is nuclear reactor-based electrical power generation fueled primarily by the fission of the isotope uranium-233 produced from the fertile element thorium. According to proponents, a thorium fuel cycle offers several potential advantages over a uranium fuel cycle—including much greater abundance on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. However, development of Thorium power has significant start-up costs. Proponents also cite the lack of weaponization potential as an advantage of thorium, while critics say that development of breeder reactors in general (including thorium reactors that are breeders by nature) increase proliferation concerns. Since about 2008, nuclear energy experts have become more interested in thorium to supply nuclear fuel in place of uranium to generate nuclear power. A nuclear reactor consumes certain specific fissile isotopes to make energy.
China blazes trail for 'clean' nuclear power from thorium China blazes trail for 'clean' nuclear power from thorium The thorium story is by now well-known. Enthusiasts think it could be the transforming technology needed to drive the industrial revolutions of Asia -- and to avoid an almighty energy crunch as an extra two billion people climb the ladder to western lifestyles. At the least, it could do for nuclear power what shale fracking has done for natural gas -- but on a bigger scale, for much longer, perhaps more cheaply, and with near zero CO2 emissions. The Chinese are leading the charge, but they are not alone. Norway's Thor Energy began a four-year test last month with Japan's Toshiba-Westinghouse to see whether they could use thorium at Norway's conventional Halden reactor in Oslo. The Japanese are keen to go further, knowing they have to come up with something radically new to regain public trust and save their nuclear industry.
By: David Russell Schilling | October 28th, 2013 Thorium Concept Car - Image Courtesy www.greenpacks.com There are now over one billion cars traveling roads around the world directly and indirectly costing trillions of dollars in material resources, time and noxious emissions. Imagine all these cars running cleanly for 100 years on just 8 grams of fuel each.

Thorium-Fueled Automobile Engine Needs Refueling Once a Century - Industry Tap

Thorium-Fueled Automobile Engine Needs Refueling Once a Century - Industry Tap
SHANGHAI - A privately held Norwegian company will start burning thorium fuel in a conventional test reactor owned by Norway's government with help from U.S.-based nuclear giant Westinghouse, the company revealed here recently. The four-year test at Norway's government owned Halden reactor could help thorium inch closer to replacing uranium as a possible safer and more effective nuclear power source. Many people believe that thorium is superior because it leaves less long- lived dangerous waste, makes it far more difficult to fashion bombs, runs more efficiently, and can be made meltdown proof. Oslo-based Thor Energy will deploy a mix of solid thorium mixed with plutonium - a blend known as "thorium MOX" - Thor's chief technology officer Julian Kelly told the Thorium Energy Conference 2012. Norway ringing in thorium nuclear New Year with Westinghouse at the party Norway ringing in thorium nuclear New Year with Westinghouse at the party
The Future of Nuclear Power Runs on the Waste of Our Nuclear Past The Future of Nuclear Power Runs on the Waste of Our Nuclear Past SExpand America alone produces about 2,000 metric tons of nuclear waste annually and our best solution for disposing of it: bury it deep in the Earth. However, a pair of MIT scientists believe they've found not only a better way of eliminating nuclear waste but recycling the deadly detritus into enough clean electricity to power the entire world until 2083. Win, meet win. The conventional nuclear power method involves inserting radioactive rods into a reactor core where their fissionable material is converted into energy. Problem is, it's not particularly efficient.
US teen designs compact nuclear reactor US teen designs compact nuclear reactor (AFP) – Feb 28, 2013 LONG BEACH, California — Eighteen-year-old Taylor Wilson has designed a compact nuclear reactor that could one day burn waste from old atomic weapons to power anything from homes and factories to space colonies. The American teen, who gained fame four years ago after designing a fusion reactor he planned to build in the garage of his family's home, shared his latest endeavor at a TED Conference in southern California on Thursday. "It's about bringing something old, fission, into the 21st Century," Wilson said.
The cold fusion dream lives on: NASA is developing cheap, clean, low-energy nuclear reaction (LENR) technology that could eventually see cars, planes, and homes powered by small, safe nuclear reactors. When we think of nuclear power, there are usually just two options: fission and fusion. Fission, which creates huge amounts of heat by splitting larger atoms into smaller atoms, is what currently powers every nuclear reactor on Earth. Fusion is the opposite, creating vast amounts of energy by fusing atoms of hydrogen together, but we’re still many years away from large-scale, commercial fusion reactors. (See: 500MW from half a gram of hydrogen: The hunt for fusion power heats up.) LENR is absolutely nothing like either fission or fusion.

NASA’s cold fusion tech could put a nuclear reactor in every home, car, and plane