background preloader

Batteries

Facebook Twitter

Sans le savoir, des chercheurs ont mis au point des batteries 400 fois plus performantes. À l’heure où l’obsolescence programmée est omniprésente dans notre société de consommation, des chercheurs américains ont fabriqué des batteries à la longévité incroyable.

Sans le savoir, des chercheurs ont mis au point des batteries 400 fois plus performantes

Et pourtant, il semble que cette invention a vu le jour complètement par hasard. L’obsolescence programmée est destinée à nous faire consommer toujours plus en imputant une durée de vie limitée aux objets. Par exemple, beaucoup ont connaissance de la fameuse puce équipant les imprimantes qui, une fois passé un nombre limite de copies, rend l’appareil inutilisable. Recherche : 200 000 cycles de batterie lithium, au bas mot ! - ZDNet.

Les avancées scientifiques sont le produit de recherches intenses, de protocoles complexes, de rudes efforts.

Recherche : 200 000 cycles de batterie lithium, au bas mot ! - ZDNet

Et parfois c'est une question de coup de bol. Prenez Mya Le Thai, étudiante en chimie de l’université de Californie. C'est en réalisant une expérience destinée à améliorer la résistance des batteries au lithium qu'elle a découvert de manière totalement fortuite une nouvelle méthode révolutionnaire. Les nano-fils positionnés dans les batteries lithium sont de la taille du micron. (Source : UCI) Ordinateurs, smartphones, tablettes ; les batteries au lithium sont partout et leur durée de vie est bien connue : entre 5 000 et 7 000 cycles en moyenne.

This Microbial Battery Makes Power And Water From Poop And Pollution. The idea of sewage-powered devices is not new.

This Microbial Battery Makes Power And Water From Poop And Pollution

In fact, it’s existed for more than a century. But finding a particularly efficient (and cost-effective) version of microbial fuel cell technology has been an ongoing challenge for engineers. A new “microbial battery,” however, looks like a breakthrough on the efficiency side of the equation. Researchers at Stanford University say they’ve developed a battery that can convert some 30% of the energy of dissolved organic matter in wastewater into electricity, the same proportion of energy that solar cells can harvest from sunlight. The difference between the battery and a regular microbial fuel cell, researchers say, lies in an electrode made up of silver oxide. Here's the science: Researchers Yi Cui, Craig Criddle, Xing Xie, and their team realized that the oxygen in their microbial fuel cell design was causing problems. So the researchers got rid of the membrane setup. Still, there’s a couple of caveats. [Image: Electricity via Shutterstock]

Batterie du futur : Et si dans trois ans il fallait recharger son smartphone avec du sucre ? [INFOHIGHTECH] [INFOHIGHTECH] Donald Sadoway : le chaînon manquant de l'énergie renouvelable. - Home. LMBC - Liquid Metal Battery Corporation. Brochure.pdf. PAUL BRAUN, A UNIVERSITY OF ILLINOIS PROFESSOR, ANNOUNCES NEW LITHIUM-ION BATTERY THAT CAN RECHARGE 100 TIMES FASTER. CHAMPAIGN, Ill. — The batteries in Illinois professor Paul Braun’s lab look like any others, but they pack a surprise inside.

PAUL BRAUN, A UNIVERSITY OF ILLINOIS PROFESSOR, ANNOUNCES NEW LITHIUM-ION BATTERY THAT CAN RECHARGE 100 TIMES FASTER

Braun’s group developed a three-dimensional nanostructure for battery cathodes that allows for dramatically faster charging and discharging without sacrificing energy storage capacity. The researchers’ findings will be published in the March 20 advance online edition of the journal Nature Nanotechnology. Aside from quick-charge consumer electronics, batteries that can store a lot of energy, release it fast and recharge quickly are desirable for electric vehicles, medical devices, lasers and military applications. A Salt and Paper Battery. Researchers at Uppsala University in Sweden have made a flexible battery using two common, cheap ingredients: cellulose and salt.

A Salt and Paper Battery

The lightweight, rechargeable battery uses thin pieces of paper–pressed mats of tangled cellulose fibers–for electrodes, while a salt solution acts as the electrolyte. The new battery should be cheap, easy to manufacture, and environmentally benign, says lead researcher Maria Stromme. She suggests that it might be used to power cheap medical diagnostics devices or sensors on packaging materials or embedded into fabric. “You don’t need advanced equipment to make the batteries,” Stromme says, “so they could be made on site in developing countries.” The new battery uses a type of rechargeable thin-film design that many other researchers and companies have been working on for several years. Thin-film batteries have other attractive features. The new paper battery, described in a paper published online in the journal Nano Letters, has some catching up to do. Charging nickel-based batteries. Learn how to maximize charge, minimize heat and reduce memory.

Charging nickel-based batteries

Battery manufacturers recommend that new batteries be slow-charged for 16 to 24 hours before use. A slow charge brings all cells in a battery pack to an equal charge level. This is important because each cell within the nickel-cadmium battery may have self-discharged at its own rate. Furthermore, during long storage the electrolyte tends to gravitate to the bottom of the cell and the initial trickle charge helps redistribute the electrolyte to eliminate dry spots on the separator. Battery manufacturers do not fully format the batteries before shipment. Most rechargeable cells include a safety vent that releases excess pressure if incorrectly charged. Full-charge Detection by Temperature Full-charge detection of sealed nickel-based batteries is more complex than that of lead acid and lithium-ion.