background preloader

"Influence of Biofield Treatment on Physicochemical Properties of Hydro" by Mahendra Kumar Trivedi

"Influence of Biofield Treatment on Physicochemical Properties of Hydro" by Mahendra Kumar Trivedi
Description Cellulose based polymers have shown tremendous potential as drug delivery carrier for oral drug delivery system (DDS). Hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC) are widely explored as excipients to improve the solubility of poorly water soluble drugs and to improve self-life of dosage form. This work is an attempt to modulate the physicochemical properties of these cellulose derivatives using biofield treatment. The treated HEC and HPC polymer were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The XRD studies revealed a semi-crystalline nature of both the polymers. Citation Information Mahendra Kumar Trivedi.

http://works.bepress.com/mahendra_trivedi/26/

Influence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose Share this: Embed* Cite this: Trivedi, Mahendra Kumar (2015): Influence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose. figshare. Retrieved 11:57, Oct 27, 2015 (GMT) *The embed functionality can only be used for non commercial purposes.

"An Effect of Biofield Treatment on Multidrug-resistant Burkholderia ce" by Mahendra Kumar Trivedi Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated.

Mahendra Kumar Trivedi Mahendra Kumar Trivedi completed his Bachelor’s degree in Mechanical Engineering in 1985 and worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he has the unique ability to harness the energy from the universe and transmit it to anywhere on earth, infusing it into living organisms and nonliving materials to optimize their potential. Publication meta - Influence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose Cellulose based polymers have shown tremendous potential as drug delivery carrier for oral drug delivery system (DDS). Hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC) are widely explored as excipients to improve the solubility of poorly water soluble drugs and to improve self-life of dosage form. This work is an attempt to modulate the physicochemical properties of these cellulose derivatives using biofield treatment. The treated HEC and HPC polymer were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The XRD studies revealed a semi-crystalline nature of both the polymers.

"An Evaluation of Biofield Treatment on Susceptibility Pattern of Multi" by Mahendra Kumar Trivedi Description Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative bacillus, an opportunistic pathogen, particularly among nosocomial infections. Multi-drug resistant strains are associated with very high rate of morbidity and mortality in severely immunocompromised patients. Present study was designed to evaluate the effect of biofield treatment against multidrug resistant S. maltophilia. Clinical sample of S. maltophilia was collected and divided into two groups i.e. control and biofield treated which were analyzed after 10 days with respect to control. The following parameters viz. susceptibility pattern, minimum inhibitory concentration (MIC), biochemical studies and biotype number of both control and treated samples were measured by MicroScan Walk-Away® system.

Investigation of Biofield Effects on Hydroxyethyl Cellulose Abstract Cellulose based polymers have shown tremendous potential as drug delivery carrier for oral drug delivery system (DDS). Hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC) are widely explored as excipients to improve the solubility of poorly water soluble drugs and to improve self-life of dosage form. This work is an attempt to modulate the physicochemical properties of these cellulose derivatives using biofield treatment.

"Effect of Biofield Treatment on Spectral Properties of Paracetamol and" by Mahendra Kumar Trivedi Description Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral properties of paracetamol and piroxicam. Mahendra Kumar Trivedi Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 . Mahendra Kumar Trivedi worked as an Engineer for 10 years. In 1995, Mr.

Antibiogram, Phylogenetic & Genotype Analysis Nocardia Otitidis Title: Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis Publication: Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam Title: Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam Publication: Chemical Sciences Journal Select license: Creative Commons Attributions-NonCommercial-ShareAlike

Agricultural Research and Impact Of Biofield Energy Agriculture is the cultivation of plants, fungi, animals and other forms of life for humanity’s basic needs, such as food, medicine, fiber, biofuel, and shelter. Agricultural science is the discipline dedicated to understanding and practicing Agriculture. Agricultural science addresses the exact, natural, economic and social parameters involved in production techniques, improving quality and quantity of agricultural products, developing new ecofriendly pesticides, creating new irrigation technologies, and developing processed products from raw materials. Agricultural biotechnology is a part of agricultural science that focuses on scientific tools and techniques, like genetic engineering, molecular markers and diagnostics, vaccines, tissue culture etc., to alter, transform or develop plants, animals, and microorganisms. As a result, consumers of agricultural products are becoming increasingly aware of the healthfulness and quality of their food.

DNA Polymorphism of Nocardia Otitidis & Biofield Treatment Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, et al. (2015) Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Bioeld Treated Nocardia otitidis. Biol Syst Open Access 4: 143. doi:10.4172/2329-6577.1000143 Publication meta - Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder - Publications - MyScienceWork Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). The XRD analysis showed the permanent compressive strain of 0.45% in treated barium titanate powder as compared to control. Furthermore, the biofield treatment had enhanced the density upto 1.38% in barium titanate as compared to control.

"Biofield Treatment: A Potential Strategy for Modification of Physical Description Indole compounds are important class of therapeutic molecules, which have excellent pharmaceutical applications. The objective of present research was to investigate the influence of biofield treatment on physical and thermal properties of indole. The study was performed in two groups (control and treated).

Related: