background preloader

Spectroscopic Characterization of Chloramphenicol and Tetracycline: An Impact of Biofield Treatment

Spectroscopic Characterization of Chloramphenicol and Tetracycline: An Impact of Biofield Treatment

Influence of Biofield Treatment on Physical, Structural and Spectral Properties of Boron Nitride Research Article Open Access Jana et al., J Material Sci Eng 2015, 4:4 Material Science & Engineering o u r n a l f t e i c s g Volume 4 • Issue 4 • 1000181 J Material Sci Eng ISSN: 2169-0022 JME, an open access journal Influence of Biofield Treatment on Physical, Structural and Spectral Properties of Boron Nitride Trivedi MK1, Patil S1, Nayak G1, Jana S2* and Latiyal O2 1Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA 2Science Research Laboratory Pvt. *Corresponding author: Snehasis Jana, Trivedi Science Research Laboratory Pvt. Bhopal- 462026, Madhya Pradesh, India, Tel: +91-755-6660006; E-mail: publication@trivedisrl.com Received June 18, 2015; Accepted July 13, 2015; Published July 23, 2015 Citation: Trivedi MK, Patil S, Nayak G, Jana S, Latiyal O (2015) Inuence of Bioeld Treatment on Physical, Structural and Spectral Properties of Boron Nitride. J Material Sci Eng 4: 181. doi:10.4175/2169-0022.1000181 IR; Surface area Introduction

"Spectroscopic Characterization of Chloramphenicol and Tetracycline: An" by Mahendra Kumar Trivedi Description Objective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. Citation Information Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana s, et al. (2015) Spectroscopic Characterization of Chloramphenicol and Tetracycline: an Impact of Biofield . SelectedWorks | Create faculty web pages to optimize scholarly communication Description Transition metal oxides (TMOs) have been known for their extraordinary electrical and magnetic properties. In the present study, some transition metal oxides (Zinc oxide, iron oxide and copper oxide) which are widely used in the fabrication of electronic devices were selected and subjected to biofield treatment. The atomic and crystal structures of TMOs were carefully studied by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) studies. XRD analysis reveals that biofield treatment significantly changed the lattice strain in unit cells, crystallite sizes and densities in ceramics oxide powders. The computed molecular weight of the treated samples exhibited significant variation. Citation Information Mahendra Kumar Trivedi.

"Effect of bio field treatment on the physical and thermal characterist" by Mahendra Kumar Trivedi Description Silicon, tin and lead powders belong to group IV in periodic table and exhibit decreasing semi conducting nature towards the bottom of the group. These are very useful in producing non ferrous powder metallurgy components. In the present investigation silicon, tin and lead powders are exposed to bio field. Both the exposed and unexposed powders are later characterized by various techniques. The average particle size, after an initial decrease is found to increase with increase in number of days after treatment although the size is lee than that exhibited by untreated powder, suggesting the operation of competing mechanisms fracture and sintering. Citation Information Mahendra Kumar Trivedi.

Epernicus: Mahendra Kumar Trivedi, B. Tech. Research: Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr. Trivedi’s biofield energy treatments became internationally renowned as The Trivedi Effect®.

"Effect of bio field treatment on the physical and thermal characterist" by Mahendra Kumar Trivedi Description Vanadium pentoxide powders are very useful in producing ferrous as well as aluminium alloys, in removing carbon and sulphur and as catalysts in synthesizing ammonia and sulphuric acid. It is also used as corrosion inhibitor petroleum and chemical processing. In the present investigation V2O5 powders are exposed to biofield. Both the exposed and unexposed powders are later characterized by various techniques. Citation Information Mahendra Kumar Trivedi.

Loop | Impact of an external energy on Staphylococcus epidermis [ATCC –13518] in relation to antibiotic susceptibility and biochemical reactions – An experimental study Purpose: While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. The present experiment on Staphylococcus epidermis [ATCC –13518], validate the effects of such energy transmitted through a person, Mahendra Trivedi, which has produced an impact measurable in scientifically rigorous manner. Methods: Staphylococcus epidermis strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mahendra Trivedi to the sealed tubes containing strain, the process taking about 3 minutes and were analyzed within 10 days after incubation. Results: The results indicated that Mahendra Trivedi energy has changed 7 of 27 biochemical characteristics of Staphylococcus epidermis along with significant changes in susceptibility pattern in 8 of 29 antibiotics. Conclusions:

Bio-field Treatment: An Effective Strategy to Improve the Quality of Beef Extract and Meat Infusion Powder Volume 5 • Issue 4 • 1000389 J Nutr Food Sci ISSN: 2155-9600 JNFS, an open access journal Open Access Research Article Nutrition and Food Sciences o u r n a l f t i d c e s Mahendra et al., J Nutr Food Sci 2015, 5:4 *Corresponding author: Shrikant P, Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA, Tel: 1602-531-5400; E-mail: publication@trivedieffect.com Received June 02, 2015; Accepted June 18, 2015; Published June 23, 2015 Citation: Mahendra KT, Gopal N, Shrikant P, Rama MT, Snehasis J, et al. (2015) Bio-eld Treatment: An Effective Strategy to Improve the Quality of Beef Extract and Meat Infusion Powder. Copyright: © 2015 Mahendra KT, et al. under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Bio-field Treatment: An Effective Strategy to Improve the Quality of Beef Extract and Meat Infusion Powder

Mahendra Kumar Trivedi Mahendra Kumar Trivedi completed his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and had worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered has the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr. Trivedi’s biofield energy treatments became internationally renown as The Trivedi Effect®. Although Mr.

Publication meta - Evaluation of Biofield Treatment on Physical, Atomic and Structural Characteristics of Manganese (II, III) Oxide In Mn3O4, the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of Mn3O4. X-ray diffraction revealed the significant effect of biofield on lattice parameter, unit cell volume, molecular weight, crystallite sizes and densities of treated Mn3O4. XRD analysis confirmed that crystallinity was enhanced and dislocation density was effectively reduced by 80%.

Related: