background preloader

AI & Machine-learning

Facebook Twitter

If Google Assistant or Siri aren't smart enough for you, you can build your own AI. Google CEO Sundar Pichai believes that we are moving to an "AI-first" world.

If Google Assistant or Siri aren't smart enough for you, you can build your own AI

In this world, we will be interacting with personal digital assistants on a range of platforms, including through Google's new intelligent speaker "Google Home" and other Google-powered devices. Google's latest personal digital assistant Google Assistant joins a group of similar technologies from Apple, Amazon and Microsoft. Apple's Siri has been around for nearly 5 years. There's a way to turn almost any object into a computer – and it could cause shockwaves in AI. The latest chip in the iPhone 7 has 3.3 billion transistors packed into a piece of silicon around the size of a small coin.

There's a way to turn almost any object into a computer – and it could cause shockwaves in AI

But the trend for smaller, increasingly powerful computers could be coming to an end. Silicon-based chips are rapidly reaching a point at which the laws of physics prevent them being any smaller. There are also some important limitations to what silicon-based devices can do that mean there is a strong argument for looking at other ways to power computers. Perhaps the most well-known alternative researchers are looking at is quantum computers, which manipulate the properties of the chips in a different way to traditional digital machines. First demonstration of brain-inspired device to power artificial systems. New research, led by the University of Southampton, has demonstrated that a nanoscale device, called a memristor, could be used to power artificial systems that can mimic the human brain.

First demonstration of brain-inspired device to power artificial systems

Artificial neural networks (ANNs) exhibit learning abilities and can perform tasks which are difficult for conventional computing systems, such as pattern recognition, on-line learning and classification. Practical ANN implementations are currently hampered by the lack of efficient hardware synapses; a key component that every ANN requires in large numbers. RoboVote helps groups make decisions using AI-driven methods. A contentious presidential election can raise questions about whether the voting system produces the best possible candidates.

RoboVote helps groups make decisions using AI-driven methods

While nothing is going to change the way Americans vote, a new online service, RoboVote.org, enables anyone to use state-of-the-art voting methods to make optimal group decisions. RoboVote, a project of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Carnegie Mellon University, doesn't just tabulate votes, as any number of online survey tools already do. AI researchers to see if they can push some boundaries with StarCraft II. (Tech Xplore)—Google's artificial intelligence group DeepMind is teaming up with the makers of the StarCraft video game.

AI researchers to see if they can push some boundaries with StarCraft II

Scientists working on artificial intelligence systems will possibly thrive from this very challenging playground. "For almost 20 years, the StarCraft game series has been widely recognized as the pinnacle of 1v1 competitive video games, and among the best PC games of all time," said Oriol Vinyals, research scientist, in the DeepMind blog.

The blog announced Friday that StarCraft II will be released as an AI research environment. Understanding the four types of AI, from reactive robots to self-aware beings. The common, and recurring, view of the latest breakthroughs in artificial intelligence research is that sentient and intelligent machines are just on the horizon.

Understanding the four types of AI, from reactive robots to self-aware beings

Machines understand verbal commands, distinguish pictures, drive cars and play games better than we do. How much longer can it be before they walk among us? The new White House report on artificial intelligence takes an appropriately skeptical view of that dream. Cow goes moo: Artificial intelligence-based system associates images with sounds. The cow goes "moo.

Cow goes moo: Artificial intelligence-based system associates images with sounds

" The pig goes "oink. " A child can learn from a picture book to associate images with sounds, but building a computer vision system that can train itself isn't as simple. Computer 'brains' solving mysteries of human behaviour. NTechLab focusing on AI facial recognition capabilities. (Tech Xplore)—How far have technology experts gone in achieving software for facial recognition?

NTechLab focusing on AI facial recognition capabilities

Technique reveals the basis for machine-learning systems' decisions. In recent years, the best-performing systems in artificial-intelligence research have come courtesy of neural networks, which look for patterns in training data that yield useful predictions or classifications.

Technique reveals the basis for machine-learning systems' decisions

A neural net might, for instance, be trained to recognize certain objects in digital images or to infer the topics of texts. But neural nets are black boxes. After training, a network may be very good at classifying data, but even its creators will have no idea why. With visual data, it's sometimes possible to automate experiments that determine which visual features a neural net is responding to. But text-processing systems tend to be more opaque. "In real-world applications, sometimes people really want to know why the model makes the predictions it does," says Tao Lei, an MIT graduate student in electrical engineering and computer science and first author on the new paper.

Virtual brains. How machine learning advances artificial intelligence. Researcher uses internet robot to investigate creativity. Tom White, senior lecturer in Victoria's School of Design, has created Smilevector—a bot that examines images of people, then adds or removes smiles to their faces.

Researcher uses internet robot to investigate creativity

"It has examined hundreds of thousands of faces to learn the difference between images, by finding relations and reapplying them," says Mr White. "When the computer finds an image it looks to identify if the person is smiling or not. DeepMind researchers boost AI learning speed with UNREAL agent. Preserving variety in subsets of unmanageably large data sets to aid machine learning. When data sets get too big, sometimes the only way to do anything useful with them is to extract much smaller subsets and analyze those instead. Those subsets have to preserve certain properties of the full sets, however, and one property that's useful in a wide range of applications is diversity. If, for instance, you're using your data to train a machine-learning system, you want to make sure that the subset you select represents the full range of cases that the system will have to confront. Last week at the Conference on Neural Information Processing Systems, researchers from MIT's Computer Science and Artificial Intelligence Laboratory and its Laboratory for Information and Decision Systems presented a new algorithm that makes the selection of diverse subsets much more practical.

"The other application where we actually use this thing is in large-scale learning. SAMIM. Gene Kogan. Pre-Work Talk Berlin. At this Berlin Pre-Work Talk, we have the honor of hearing from two great speakers who are pushing the boundaries in their explorations of machine learning, and will open our eyes to new ways of applying it to design and creative fields. Visiting Berlin from New York for only a few weeks, Gene Kogan is an artist and programmer who is interested in generative systems, emerging technology and artificial intelligence.

In his talk he’ll broadly present recent advancements in the field of machine learning, focusing on applications to art, design, and other creative disciplines. He’ll share recent works and easily explain their underlying science using a selection of interactive demos and educational resources from ml4a (the free book he’s developing about machine learning for artists). Gene Kogan Gene is an artist and programmer who is interested in generative systems, emerging technology, and artificial intelligence. Machine Learning for Artists.