background preloader

Interference

Facebook Twitter

Google attēlu meklēšanas rezultāti:

Holografija

Double-slit experiment. The double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena. The experiment belongs to a general class of "double path" experiments, in which a wave is split into two separate waves that later combine back into a single wave. Changes in the path lengths of both waves result in a phase shift, creating an interference pattern. Another version is the Mach–Zehnder interferometer, which splits the beam with a mirror. This experiment is sometimes referred to as Young's experiment and while there is no doubt that Young's demonstration of optical interference, using sunlight, pinholes and cards, played a vital part in the acceptance of the wave theory of light, there is some question as to whether he ever actually performed a double-slit interference experiment.[1] Overview[edit] Variations of the experiment[edit]

Holography « LifeOS: exploring the system that executes DNA. It all starts with the properties of laser light. Of course you know how a laser is created. Ordinary light is beamed through a crystal. After bouncing around the internal structure of the crystal, the light comes out in a highly organized beam. That’s not the only way to create laser light. LASER actually stands for, “Light Amplification by Stimulated Emission of Radiation”. The properties of laser light are still being explored, but those already discovered have revolutionized modern technology.

What makes a hologram work is that the two beams of laser light that illuminate the object are not only the same type, but in perfect synchronization. The resulting pattern is meaningless when seen in ordinary light, but when illuminated by the original laser, it produces a 3D image of the original object. The interference patterns captured on film are not focused by a lens and therefore the information thus recorded is evenly distributed over the recording surface. Holographic Memory. Interference. Laser Interferometry. The Ether and Michelson-Morley Experiment. Beats. From Physclips. Interference and consonance The ratios 3:2 and 5:4 are called (by many Western people, at least), musical consonances (in just intonation). In this example, one tone remains constant at 400 Hz. The other is varied rapidly from 400 to 500 Hz, where it pauses briefly, before increasing to 600 Hz. You may hear a descending Tartini tone during the first of the variations. If you do not hear it at first, you might try increasing the volume and using headphones.

Here are some more consonances in just intonation. and here a scale constructed using the notes used the consonances given above, plus two consonances at 5:4 and 3:2 based on the fifth note in the scale. However, this has taken us some distance from beats and Tartini tones. Tuning a guitar with beats and harmonics Here I use the fourth 'harmonic' on the low E string and the third 'harmonic' on the A string. Look at the soundtrack. What beats have to do with Heisenberg's Uncertainty Principle.