background preloader

Klebsiella Pneumoniae Biochemical Characteristics

Klebsiella Pneumoniae Biochemical Characteristics
Abstract: Pathogenic isolates of Klebsiella pneumoniae (K. pneumoniae), particularly the extended-spectrum β-lactamase (ESBL) producing strains, are mostly associated with the failure of antibiotic therapy in nosocomial infections. The present work was designed to evaluate the impact of Mr. Trivedi’s biofield energy treatment on phenotypic and genotypic characteristics of K. pneumoniae. The strain of K. pneumoniae bearing ATCC 15380 (American Type Culture Collection) was procured from the Bangalore Genei, in sealed pack and divided into control and treated groups. Treated group was subjected to Mr. Keywords: Klebsiella pneumoniae; Biofield energy treatment; Antibiogram, Biochemical reactions, Polymorphism; Random Amplified Polymorphic DNA. Abbreviations: Introduction The increased medical practice for antibiotic usage creates selection pressure and results emergence of nosocomial pathogens. Materials and Methods Biofield treatment modalities Biochemical studies Biotype number Conclusion 1.

http://trivediscience.com/publications/microbiology-publications/antimicrobial-susceptibility-biochemical-characterization-and-molecular-typing-of-biofield-treated-klebsiella-pneumoniae/

Assessment of Shigella Boydii Characteristics Abstract Bacillary dysentery and acute gastroenteritis caused by infection of Shigella species are major public health burden in India and its neighboring countries. Emergence of antimicrobial resistance threatens to render current treatments ineffective. Impact of Biofield Treatment on Enterobacter Aerogenes Abstract: Enterobacter aerogenes (E. aerogenes) has been reported as the versatile opportunistic pathogen associated with the hospital infections worldwide. The aim of the study was to determine the impact of Mr. Trivedi’s biofield energy treatment on multidrug resistant clinical lab isolates (LSs) of E. aerogenes. The MDR isolates of E. aerogenes (i.e., LS 45 and LS 54) were divided into two groups, i.e., control and treated. Samples were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study, and biotype number using MicroScan Walk-Away® system, on day 10 after the biofield treatment.

Effect of Biofield Treatment on Staphylococcus Species Abstract: Antimicrobial resistance is a global health issue in the developing countries. This study was carried out to evaluate the impact of Mr. Trivedi’s biofield energy treatment on multidrug resistant (MDR) clinical lab isolates (LSs) of Staphylococcus species viz.

Study of Multidrug Resistant Strain of K. Oxytoca Abstract Klebsiella are opportunistic pathogens that cause a wide spectrum of severe diseases. The aim of the present study was to investigate the impact of biofield treatment on multidrug resistant strain of K. oxytoca with respect to antibiogram pattern along with biochemical study and biotype number.

Impact of Biofield Treatment on Klebsiella Pneumoniae Abstract Increasing cancer rates particularly in the developed world are associated with related lifestyle and environmental exposures. Combined immunotherapy and targeted therapies are the main treatment approaches in advanced and recurrent cancer. Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen - Trivedi Science Abstract: Streptococcus agalactiae group B (S. agalactiae gr. B) is widespread in nature mainly causes bacterial septicemia and neonatal meningitis. The current study was attempted to investigate the effect of biofield treatment on S. agalactiae gr. B with respect of antimicrobial sensitivity, biochemical reactions and bio typing. S. agalactiae gr.

Providencia Rettgeri Biochemical Reactions Analysis Abstract Providencia rettgeri (P. rettgeri) is the key organism for gastrointestinal tract infections due to its high virulence properties. The current study was designed to investigate the effect of Mr. Trivedi’s biofield energy treatment on P. rettgeri in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number.

Impact of Biofield Treatment on Characteristics of Magnesium Abstract Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment.

Influence of Human Biofield on Klebsiella oxytoca Abstract Klebsiella oxytoca (K. oxytoca) is a Gram-negative microbe generally associated with community and hospitalacquired infections. Due to its clinical significance, we evaluated the effect of biofield treatment on phenotype and biotype characteristics of K. oxytoca (ATCC 43165). The study was performed into three groups i.e. C (control), T1 (treatment, revived); and T2 (treatment, lyophilized).

Energy Treatment and Shigella Sonnei Characteristics Abstract: Shigella sonnei (S. sonnei) is a non-motile, rod shape, clinically significant, Gram-negative bacterium. It is commonly associated with dysentery (shigellosis). Recently, resistance to third and fourth generation cephalosporins and fluoroquinolones has been reported in S. sonnei. The Science Behind The Trivedi Effect® Atoms exist in all states of matter. Even the cells of microbes, plants, human beings and all other living / non-living things consist entirely of atoms in the form of complex molecules. Atoms, at the most elementary level, are made from electrons, protons, neutrons and several known and unknown subatomic particles.

Impact Of Biofield Treatment On Salmonella Paratyphi A Abstract Enteric fever is a major global problem. Emergence of antimicrobial resistance threatens to render current treatments ineffective. Antimicrobial & Biotyping Analysis of Escherichia Coli Abstract Escherichia coli (E. coli) infections are the major health concern, as it causes infections in human mainly in urinary tract, ear, and wound infections. The present study evaluates the impact of biofield energy treatment on E. coli regarding antimicrobial sensitivity assay, biochemical study and biotype number. Four multidrug resistant (MDR) clinical lab isolates (LSs) of E. coli (LS 12, LS 13, LS 42, and LS 51) were taken in two groups i.e. control and treated.

"An Effect of Biofield Treatment on Multidrug-resistant Burkholderia ce" by Mahendra Kumar Trivedi Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia.

Related: