background preloader

Stat spatiale

Facebook Twitter

R. Integrating QGIS and R: A stratified sampling example. Oct 31, 2015 QGIS, a cross-platform free and open-source software, has become one of the leading GIS in the market in recent years.

Integrating QGIS and R: A stratified sampling example

Thanks to the work of an active group of developers, QGIS provides geoprocessing modules similar to standard tools found in privative GIS, supports most of the vector and raster file formats and provides an interface to databases such as PostgreSQL/PostGIS, SpatiaLite and MySQL. One of the most compelling features of QGIS is its integration with other open-source GIS and statistical packages. Currently, QGIS supports SAGA, Orfeo Toolbox, GRASS GIS and R, which greatly expands QGIS' core functionality. In this post I will focus on the integration between QGIS and R and explain how to configure the QGIS processing framework and execute an external R algorithm from the QGIS processing toolbox. Mapping the 1854 Cholera Outbreak. Edouard-legoupil.github. R is a programming language and a software environment for statistical computing and graphics.

edouard-legoupil.github

The first version of R has been released in 1997! The capabilities of R are extended through user-created packages, which allow specialized statistical techniques, graphical devices, import/export capabilities, reporting tools. A core set of packages is included with the installation of R. More than 5,800 additional packages and 120,000 functions (as of June 2014) are developped and shared by academics and experts. R is extremely well documented. Spatial-analyst.net. Carnet (neo)cartographique. Camarades cartographes.

Carnet (neo)cartographique

Si vous aimez les cartes thématiques. Si vous aimez gagner du temps dans votre travail. Si les variables visuelles n’ont pas de secret pour vous. Si vous êtes un peu geek sur les bords. Et si vous voulez défendre les logiciels libres. Géocoder en masse avec R et sans Google Maps. Il existe différentes solutions pour géocoder des adresses ou des lieux avec R.

Géocoder en masse avec R et sans Google Maps

Les plus fréquemment citées sont basées sur des services commerciaux et utilisent des données non libres. D’autres utilisent des logiciels libres et des données libres (OpenStreetMap). La nature commerciale / non commerciale, libre / non libre d’une solution a des implications sur la construction et la diffusion des données géocodées. Je propose ici une petite revue des différentes possibilités de géocodage dans R et une proposition de package. Google & Co La solution la plus connue passe par l’utilisation du package ggmap.

Standard Usage Limits Users of the standard API: – 2,500 free requests per day – 10 requests per secondTerms of Use Restrictions “The Google Maps Geocoding API may only be used in conjunction with a Google map; geocoding results without displaying them on a map is prohibited.(…)” (Google Maps Geocoding API Usage Limits ) OpenStreetMap & open source Le package photon Exemple d’utilisation : Package SpatialPosition. Outils » OASIS. Exploratory Data Analysis. About the Course This course covers the essential exploratory techniques for summarizing data.

Exploratory Data Analysis

These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data.

Course Syllabus Course Format There will be weekly video lectures, quizzes, and peer assessments. As part of this class you will be required to set up a GitHub account. How do the courses in the Data Science Specialization depend on each other? Will I get a Statement of Accomplishment after completing this class? What resources will I need for this class? Installing R: R Programming Tutorial for Beginners Course - Part 1. Deux ateliers R : deux présentations. Deux ateliers méthodologiques sur R ont eu lieu à Toulouse en Mai dernier.

Deux ateliers R : deux présentations

La première séance était une séance d’initiation, de discussion et de présentation autour de R tandis que la seconde portait sur l’utilisation de R pour l’analyse de réseau. Ci-dessous, nous mettons à disposition les supports qui ont alimenté la discussion lors de ces rencontres en petits comités. Un peu de temps a passé depuis ces ateliers mais le contenu est toujours d’actualité (sauf le lien pour télécharger les documents). Il est à noter que le nombre de packages CRAN a bien évolué depuis, passant de 5531 au 12 mai 2014 à 5894 au 17 septembre 2014! Intro-spatial-rl.pdf. 4. Lesson: Spatial Statistics — The Free Quantum GIS Training Manual 1.0 documentation.

Note Lesson developed by Linfiniti and S Motala (Cape Peninsula University of Technology) Spatial statistics allow you to analyze and understand what is going on in a given vector dataset.

4. Lesson: Spatial Statistics — The Free Quantum GIS Training Manual 1.0 documentation

QGIS includes several standard tools for statistical analysis which prove useful in this regard. The goal for this lesson: To know how to use QGIS’ spatial statistics tools. Follow along: Create a Test Dataset In order to get a point dataset to work with, we’ll need a point dataset. A Spatial Data Analysis GUI for R. ElementR.