background preloader

Articles

Facebook Twitter

Four things you might not know about dark matter. Not long after physicists on experiments at the Large Hadron Collider at CERN laboratory discovered the Higgs boson, CERN Director-General Rolf Heuer was asked, “What’s next?” One of the top priorities he named: figuring out dark matter. Dark matter is five times more prevalent than ordinary matter. It seems to exist in clumps around the universe, forming a kind of scaffolding on which visible matter coalesces into galaxies. The nature of dark matter is unknown, but physicists have suggested that it, like visible matter, is made up of particles. Dark matter shows up periodically in the media, often when an experiment has spotted a potential sign of it. Here are four facts to get you up to speed on one of the most exciting topics in particle physics: 1. Illustration by: Sandbox Studio, Chicago At this moment, several experiments are on the hunt for dark matter. 2.

Several experiments are searching for dark matter, and some of them may have even already found it. 3. 4. In a "Rainbow" Universe Time May Have No Beginning. What if the universe had no beginning, and time stretched back infinitely without a big bang to start things off? That's one possible consequence of an idea called "rainbow gravity," so-named because it posits that gravity's effects on spacetime are felt differently by different wavelengths of light, aka different colors in the rainbow.

Rainbow gravity was first proposed 10 years ago as a possible step toward repairing the rifts between the theories of general relativity (covering the very big) and quantum mechanics (concerning the realm of the very small). The idea is not a complete theory for describing quantum effects on gravity, and is not widely accepted. Nevertheless, physicists have now applied the concept to the question of how the universe began, and found that if rainbow gravity is correct, spacetime may have a drastically different origin story than the widely accepted picture of the big bang. Yet the concept has its critics. The Theory of Everything | Joe Arrigo PERSPECTIVE. The above equation was written by Dr. Michio Kaku, theoretical physicist, who gradu­ated first in his physics class at Harvard, and, when he was in high school built a 2.3 million electron volt atom-smasher in his parents garage.

It is an equation for String Field Theory—a theory that may unite The Theory of Relativity with Quantum Theory, into a uni­fied theory called The Theory of Everything. Theoretical physicists are those scientists who work in that twilight zone cutting edge realm be­tween reality and science fiction. For thirty years Einstein sought a unified theory of physics that would integrate all the forces of nature into a single beautiful tapestry. Even he failed. And it remains that his relativity the­ory, and quantum theory—al­though elo­quent explanations for their re­spective large and small worlds, are in con­flict, they speak not to each other; presenting a monumental conundrum for these genius pioneers. . © Joe Arrigo.

Bosão de Higgs. Dark Matter: The Larger Invisible Universe | Joe Arrigo PERSPECTIVE. Normal matter—you, me, oatmeal, mountains, oceans, moons, planets, galaxies—make up about twenty-percent of the universe; the other eighty-percent is dark matter—star-stuff we cannot see or detect…yet. Why are scientists so certain this enigmatic matter exists? Because the evidence permeates the universe, first observed by Fritz Zwicky, when he measured the motions of galaxies and calculated that there wasn’t enough visible matter to affect galaxies to extent they were being pulled around.WWWFirst, there isn’t enough gravitational force within galaxies to bind and hold them in their current formation; then there is an invisible element that keeps them rotating faster than scientists would expect, clusters of galaxies bend and distort light more than they should, and supercomputer simulations exhibit that clouds of ordinary matter in the early universe did not have enough gravity to create the tight formations of galaxies we now see.