background preloader

Biofield Treatment

Facebook Twitter

Impact of Biofield Treatment on Enterobacter Aerogenes. Abstract: Enterobacter aerogenes (E. aerogenes) has been reported as the versatile opportunistic pathogen associated with the hospital infections worldwide. The aim of the study was to determine the impact of Mr. Trivedi’s biofield energy treatment on multidrug resistant clinical lab isolates (LSs) of E. aerogenes. The MDR isolates of E. aerogenes (i.e., LS 45 and LS 54) were divided into two groups, i.e., control and treated. Samples were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study, and biotype number using MicroScan Walk-Away® system, on day 10 after the biofield treatment.

Keywords: Enterobacter aerogenes; Multidrug resistant; Antimicrobial susceptibility; Biofield treatment; Biochemical reactions; Biotyping Introduction Enterobacter is a genus of Gram-negative, rod shaped, facultative anaerobic, and non-spore forming microbes of family Enterobacteriaceae. Materials and Methods Inoculum preparation Biofield treatment Results. Impact of Biofield Treatment on Enterobacter Aerogenes.

Antimicrobial Susceptibility, Biochemical Characterization and Molecular Typing of Biofield Treated Klebsiella pneumoniae - Trivedi Science. Abstract: Pathogenic isolates of Klebsiella pneumoniae (K. pneumoniae), particularly the extended-spectrum β-lactamase (ESBL) producing strains, are mostly associated with the failure of antibiotic therapy in nosocomial infections. The present work was designed to evaluate the impact of Mr. Trivedi’s biofield energy treatment on phenotypic and genotypic characteristics of K. pneumoniae.

The strain of K. pneumoniae bearing ATCC 15380 (American Type Culture Collection) was procured from the Bangalore Genei, in sealed pack and divided into control and treated groups. Treated group was subjected to Mr. Trivedi’s biofield energy treatment and analyzed for the antimicrobial susceptibility, minimum inhibitory concentration (MIC), biochemical reactions, and biotyping using automated MicroScan Walk-Away® system. Keywords: Klebsiella pneumoniae; Biofield energy treatment; Antibiogram, Biochemical reactions, Polymorphism; Random Amplified Polymorphic DNA.

Abbreviations: Introduction Biotype number 1. Impact of Biofield Treatment on Klebsiella Pneumoniae. Abstract Increasing cancer rates particularly in the developed world are associated with related lifestyle and environmental exposures. Combined immunotherapy and targeted therapies are the main treatment approaches in advanced and recurrent cancer.

An alternate approach, energy medicine is increasingly used in life threatening problems to promote human wellness. This study aimed to investigate the effect of biofield treatment on cancer biomarkers involved in human endometrium and prostate cancer cell lines. Each cancer cell lines were taken in two sealed tubes i.e. one tube was considered as control and another tube was subjected to Mr. Trivedi’s biofield treatment, referred as treated. Keywords: Biofield treatment; Cancer biomarker; ELISA; TNF-α; IL-6; Prostate cancer; Endometrium cancer Introduction Cancer has the potential to invade or spread to other parts of the body which involves abnormal cell growth.

In the last 70 years, cancer treatment strategies have rapidly increased. 1. Impact of Biofield Treatment on Characteristics of Magnesium. Abstract Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder.

Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer. XRD data showed that biofield treatment has altered the lattice parameter, unit cell volume, density, atomic weight, and nuclear charge per unit volume of treated magnesium powder, as compared to control.

In addition, the crystallite size of treated magnesium was significantly reduced up to 16.70, 16.70, and 28.59% on day 7, 41 and 63 respectively as compared to control. Introduction Experimental 1. The Science Behind The Trivedi Effect® | Trivedi Science. Atoms exist in all states of matter. Even the cells of microbes, plants, human beings and all other living / non-living things consist entirely of atoms in the form of complex molecules.

Atoms, at the most elementary level, are made from electrons, protons, neutrons and several known and unknown subatomic particles. Physicists and chemists hypothesize several theories to explain the systematic and disciplinary existence of various species inside the atom, the nature of bonds between atoms in condensed states (such as solids and liquids), as well as for the way the particles are working inside the atom. There have been several attempts to develop a unified picture that links the macroscopic universe and the microscopic atomic and subatomic world. The electromagnetic spectrum, of which visible light only forms a small portion of, arises from the cosmic radiation filtered by the atmosphere surrounding the planet. The dual nature of matter and radiation led to quantum indeterminacy.

Mr. "An Effect of Biofield Treatment on Multidrug-resistant Burkholderia ce" by Mahendra Kumar Trivedi. Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with control group. Control and treated group were analyzed for susceptibility pattern, MIC value, biochemical studies and biotype number using MicroScan Walk-Away® system. Sensitivity assay results showed a change in pattern from resistant to intermediate in aztreonam, intermediate to resistant in ceftazidime, ciprofloxacin, imipenem, and levofloxacin while sensitive to resistant in meropenem and piperacillin/ tazobactam.

Citation Information Mahendra Kumar Trivedi. Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen. Title: Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Publication: Journal of Clinical & Medical Genomics Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 21st, 2016 Abstract: Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. Mahendra Kumar Trivedi. Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 . Mahendra Kumar Trivedi worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential.

For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr. Trivedi’s biofield energy treatments became internationally renowned as The Trivedi Effect®. Mahendra Kumar Trivedi J-4219-2015 - ResearcherID.com. Mahendra Kumar Trivedi J-4219-2015 - ResearcherID.com. Effect of Biofield Treatment on Citrobacter Braakii.

Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Keywords: Citrobacter braakii; Antimicrobial susceptibility; Biofield treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gramnegative bacteria; Enterobacteriaceae Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment.

Materials and Methods Experimental design The impact of biofield treatment on tested bacterium C. braakii was evaluated in two groups- Group IIB – Study I Gr.: Group 1. Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii. Research Article Open Access Trivedi et al., J Clin Med Genom 2015, 3:1 Volume 3 • Issue 1 • 1000129 J Clin Med Genom ISSN: IJGM, an open access journal Journal of Clinical & Medical Genomics Keywords: Citrobacter braakii; Antimicrobial susceptibility; Bioeld treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gram- negative bacteria; Enterobacteriaceae Abbreviations: MDR: Multi-Drug Resistant; ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; HBMEC: Human Brain Microvascular Endothelial Cells Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment.

Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii. "Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobac" by Mahendra Kumar Trivedi. Description Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) Citation Information Trivedi MK, Branton A, Trivedi D, Nayak G, Charan S, et al. (2015) Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen. Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen.

Publication meta - Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen - Publications. Phenotyping and 16s rdna analysis after biofield treatment on citrobacter braakii a urinary pathogen 2332 0672 1000130.