background preloader

Nano tech

Facebook Twitter

Nanosuit. Carbon Nanotubes. Transmission electron microscopy of carbon nanotubes: a warning. Carbon nanotube science and technology Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. They are among the stiffest and strongest fibres known, and have remarkable electronic properties and many other unique characteristics. For these reasons they have attracted huge academic and industrial interest, with thousands of papers on nanotubes being published every year.

Commercial applications have been rather slow to develop, however, primarily because of the high production costs of the best quality nanotubes. The current huge interest in carbon nanotubes is a direct consequence of the synthesis of buckminsterfullerene, C60 , and other fullerenes, in 1985. A transmission electron micrograph of some multiwalled nanotubes is shown in the figure (left). Structure The bonding in carbon nanotubes is sp, with each atom joined to three neighbours, as in graphite.

Synthesis Properties Nanohorns. Nanotechnology. Nanotechnology. Just give me the FAQ The next few paragraphs provide a brief introduction to the core concepts of nanotechnology, followed by links to further reading. Manufactured products are made from atoms. The properties of those products depend on how those atoms are arranged. If we rearrange the atoms in coal we can make diamond. If we rearrange the atoms in sand (and add a few other trace elements) we can make computer chips. If we rearrange the atoms in dirt, water and air we can make potatoes.

Todays manufacturing methods are very crude at the molecular level. It's like trying to make things out of LEGO blocks with boxing gloves on your hands. In the future, nanotechnology (more specifically, molecular nanotechnology or MNT) will let us take off the boxing gloves. "Nanotechnology" has become something of a buzzword and is applied to many products and technologies that are often largely unrelated to molecular nanotechnology.

Nanotechnology will let us: Some Frequently Asked Questions More Information Books. Nano tech 2013 International Nanotechnology Exhibition & Conference. Nanotechnology. Nanotechnology ("nanotech") is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology[1][2] referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers.

This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold. Origins[edit] Comparison of Nanomaterials Sizes. Nanotechnology. Nano. Big Thinkers - Ralph Merkle [Nanotechnologist] Nanotechnology is coming. By Ralph C. Merkle, Principal Fellow, Zyvex This is the English original of an article translated into German and published in the Frankfurter Allgemeine Zeitung of Monday, September 11 2000 on page 55. In the coming decades nanotechnology could make a supercomputer so small it could barely be seen in a light microscope. Fleets of medical nanorobots smaller than a cell could roam our bodies eliminating bacteria, clearing out clogged arteries, and reversing the ravages of old age.

Clean factories could eliminate pollution caused by manufacturing. Low cost solar cells and batteries could replace coal, oil and nuclear fuels with clean, cheap and abundant solar power. Not long ago, such a forecast would have been ridiculed. At its heart, the coming revolution in manufacturing is a continuation of trends that date back decades and even centuries. The remarkably low manufacturing cost comes from self replication. Self replication is at the heart of many policy discussions. Further reading: