background preloader

Complexity

Facebook Twitter

Institut des Systèmes Complexes. Do.it.ourselves. Emergence : Complexity and Organization Articles - Find Articles at CBS MoneyWatch.com. In Search of..... - TV.com www.tv.com/shows/in-search-of Narrarated by Leonard Nimoy, In search of was a 30 minute syndicated show that covered a wide range of paranormal topics.

Emergence : Complexity and Organization Articles - Find Articles at CBS MoneyWatch.com

It pioneered a lot of the methodology that ... Search Engine - Download.com download.cnet.com/s/search-engine search engine free download - GSA Search Engine Ranker, Nomao - The personalized search engine, Zoom Search Engine, and many more programs Google Search - Download.com download.cnet.com/s/google-search google search free download - Google Search, Google Toolbar for Internet Explorer, Google Search, and many more programs Star Search - Episode Guide - TV.com www.tv.com/shows/star-search-2003/episodes Star Search episode guides on TV.com. Maass Wolfgang - Homepage.

Complexity economics. Collapse dynamics: Phase transitions in complex social systems. Evolutionary economics. Encyclopedia of Complexity and Systems Science. Assembles for the first time the concepts and tools for analyzing complex systems in a wide range of fields Reflects the real world by integrating complexity with the deterministic equations and concepts that define matter, energy, and the four forces identified in nature Benefits a broad audience: undergraduates, researchers and practitioners in mathematics and many related fields.

Encyclopedia of Complexity and Systems Science

Emergence. In philosophy, systems theory, science, and art, emergence is a process whereby larger entities, patterns, and regularities arise through interactions among smaller or simpler entities that themselves do not exhibit such properties.

Emergence

Emergence is central in theories of integrative levels and of complex systems. For instance, the phenomenon life as studied in biology is commonly perceived as an emergent property of interacting molecules as studied in chemistry, whose phenomena reflect interactions among elementary particles, modeled in particle physics, that at such higher mass—via substantial conglomeration—exhibit motion as modeled in gravitational physics.

Neurobiological phenomena are often presumed to suffice as the underlying basis of psychological phenomena, whereby economic phenomena are in turn presumed to principally emerge. In philosophy, emergence typically refers to emergentism. In philosophy[edit] Main article: Emergentism. Complex systems. Complex systems present problems both in mathematical modelling and philosophical foundations.

Complex systems

The study of complex systems represents a new approach to science that investigates how relationships between parts give rise to the collective behaviors of a system and how the system interacts and forms relationships with its environment.[1] Such systems are used to model processes in computer science, biology,[2] economics, physics, chemistry,[3] and many other fields. It is also called complex systems theory, complexity science, study of complex systems, sciences of complexity, non-equilibrium physics, and historical physics.

A variety of abstract theoretical complex systems is studied as a field of mathematics. The key problems of complex systems are difficulties with their formal modelling and simulation. Emergence. Complexity-map-overview.png 1221×762 pixels. Complex adaptive system. They are complex in that they are dynamic networks of interactions, and their relationships are not aggregations of the individual static entities.

Complex adaptive system

They are adaptive in that the individual and collective behavior mutate and self-organize corresponding to the change-initiating micro-event or collection of events.[1][2] Overview[edit] The term complex adaptive systems, or complexity science, is often used to describe the loosely organized academic field that has grown up around the study of such systems. Complexity science is not a single theory— it encompasses more than one theoretical framework and is highly interdisciplinary, seeking the answers to some fundamental questions about living, adaptable, changeable systems. The fields of CAS and artificial life are closely related. The study of CAS focuses on complex, emergent and macroscopic properties of the system.[3][11][12] John H. General properties[edit] Characteristics[edit] Robert Axelrod & Michael D. Systemtheorie. Die Systemtheorie ist sowohl eine allgemeine und eigenständige Disziplin als auch ein weitverzweigter und heterogener Rahmen für einen interdisziplinären Diskurs, der den Begriff System als Grundkonzept führt.

Systemtheorie

Es gibt folglich sowohl eine allgemeine „Systemtheorie“ als auch eine Vielzahl unterschiedlicher, zum Teil widersprüchlicher und konkurrierender Systemdefinitionen und -begriffe. Es hat sich heute jedoch eine relativ stabile Reihe an Begriffen und Theoremen herausgebildet, auf die sich der systemtheoretische Diskurs bezieht. Geschichte[Bearbeiten] Der Begriff Allgemeine Systemtheorie geht auf den Biologen Ludwig von Bertalanffy zurück. Seine Arbeiten bilden zusammen mit der Kybernetik (Norbert Wiener, William Ross Ashby) die grundlegenden Überlegungen dieses Wissenschaftsansatzes. Kulturgeschichtlich geht der Systembegriff bis auf Johann Heinrich Lambert zurück und wurde unter anderem von Johann Gottfried Herder übernommen und ausgearbeitet.

Percolation threshold. Percolation threshold is a mathematical term related to percolation theory , which is the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making , percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them.

The percolation threshold is the critical value of the occupation probability p , or more generally a critical surface for a group of parameters p 1 , p 2 , ..., such that infinite connectivity ( percolation ) first occurs. [ edit ] Percolation models In the systems described so far, it has been assumed that the occupation of a site or bond is completely random—this is the so-called Bernoulli percolation.

Self-organization. Self-organization occurs in a variety of physical, chemical, biological, robotic, social and cognitive systems.

Self-organization

Common examples include crystallization, the emergence of convection patterns in a liquid heated from below, chemical oscillators, swarming in groups of animals, and the way neural networks learn to recognize complex patterns. Overview[edit] The most robust and unambiguous examples[1] of self-organizing systems are from the physics of non-equilibrium processes. Self-organization is also relevant in chemistry, where it has often been taken as being synonymous with self-assembly.

The concept of self-organization is central to the description of biological systems, from the subcellular to the ecosystem level. Self-organization usually relies on three basic ingredients:[3] Agent-based model. An agent-based model (ABM) is one of a class of computational models for simulating the actions and interactions of autonomous agents (both individual or collective entities such as organizations or groups) with a view to assessing their effects on the system as a whole.

Agent-based model

It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo Methods are used to introduce randomness. Particularly within ecology, ABMs are also called individual-based models (IBMs),[1] and individuals within IBMs may be simpler than fully autonomous agents within ABMs. Agent-based models are a kind of microscale model [3] that simulate the simultaneous operations and interactions of multiple agents in an attempt to re-create and predict the appearance of complex phenomena. The process is one of emergence from the lower (micro) level of systems to a higher (macro) level. History[edit] Early developments[edit] Cellular automaton.

The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory.

Cellular automaton

While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of one-dimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turing-complete.

Wolfram published A New Kind of Science in 2002, claiming that cellular automata have applications in many fields of science. These include computer processors and cryptography. The primary classifications of cellular automata as outlined by Wolfram are numbered one to four. Complex adaptive system « Learning Change. This book provides the first clear, comprehensive, and accessible account of complex adaptive social systems, by two of the field’s leading authorities.

Complex adaptive system « Learning Change

Such systems–whether political parties, stock markets, or ant colonies–present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. John H Miller Social Complex Systems. Department Head and Professor of Economics and Social Science Office: PH 208D Phone: (412) 268-3229 Fax: (412) 268-6938 Education.