background preloader

Burnin test

Facebook Twitter

GitHub - robotframework/PythonRemoteServer: Robot Framework remote server implemented with Python. 10张图带你深入理解Docker容器和镜像 - DockOne.io. Kubernetes架构及资源关系简单总结 - 时间轨迹. Kubernetes架构及资源关系简单总结 - 时间轨迹. 轻松了解Kubernetes部署功能. Kubernetes 简介:service 和 kube-proxy 原理 – Cizixs Writes Here. 简介.

kubernetes 简介:service 和 kube-proxy 原理 – Cizixs Writes Here

Kubernetes 简介:service 和 kube-proxy 原理 – Cizixs Writes Here. Kubernetes 简介:service 和 kube-proxy 原理 – Cizixs Writes Here. Kubernetes 简介:service 和 kube-proxy 原理 – Cizixs Writes Here. Kubernetes Service 介紹. 系列文章 Kubernetes Service - 存取路徑差異、注意要點 前言 由於 Kubernetes 的 Deployment 帶來便利性,讓開發者能夠在短時間內於多個節點上部署撰寫好的各種不同應用(application)。

Kubernetes Service 介紹

但該如何讓使用者能夠存取位於 Pod 上的應用,而無需考慮到不同節點的問題呢? 探討Pod中有多個container之狀況 · Kuberbetes學習筆記. # k8s-2pod.yml apiVersion: v1 kind: Pod metadata: name: myweb labels: app: web spec: containers: - name: db image: couchdb ports: - containerPort: 5984 - name: ap image: peihsinsu/simpleweb ports: - containerPort: 3000 kubctl create -f k8s-2pod.yml root@simon-k8s-worker1:~# docker exec -it 0c5d3d95760a bash root@myweb:/var/lib/couchdb# ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 19: eth0@if20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1432 qdisc noqueue state UP group default link/ether 02:42:0a:01:54:02 brd ff:ff:ff:ff:ff:ff inet 10.1.84.2/24 scope global eth0 valid_lft forever preferred_lft forever inet6 fe80::42:aff:fe01:5402/64 scope link tentative dadfailed valid_lft forever preferred_lft forever root@myweb:/var/lib/couchdb# 關於network binding的官方文件:

探討Pod中有多個container之狀況 · Kuberbetes學習筆記

Kubernetes應用部署策略實踐 – wechat中文網-科技. Untitled. Access private registry: x509: certificate signed by unknown authority · Issue #8849 · moby/moby. Getting "x509: certificate signed by unknown authority" even with " 在开启TLS的Kubernetes1.6集群上安装heapster - Jimmy Song. (题图:大喵 Aug 8,2016) 前言 这是和我一步步部署kubernetes集群项目(fork自opsnull)中的一篇文章,下文是结合我之前部署kubernetes的过程产生的kuberentes环境,在开启了TLS验证的集群中部署heapster,包括influxdb、grafana等组件。

在开启TLS的Kubernetes1.6集群上安装heapster - Jimmy Song

配置和安装Heapster 到 heapster release 页面 下载最新版本的 heapster。 Docker Introduction. Docker Introduction 基本概念 Docker Image Docker Image是一个只读的模板,一个Docker Image可以是一个完整的Ubuntu系统,也可以是包括了Ubuntu系统、JDK以及一个可运行的Tomcat程序。

Docker Introduction

Docker Container 对比Docker Image,Docker Container是通过Docker Image来创建的一个运行时的容器,容器之间通过namespace和cgroup的技术进行资源上的隔离。 Docker仓库 制作好的Docker Image需要一个统一的地方来存储,可以使用公网存在的Docker 仓库(Docker Hub),也可以使用私有的Docker 仓库(docker.baifendian.com).通过docker push和docker pull实现Docker Image的上传和下载。 Docker Daemon** 运行在主机上的守护进程,负责Docker Container的生命周期以及本地Docker Image的存储。 如何制作一个Docker Image 准备好一个应用程序 目录结构: project \_Dockerfile \_hello \_hello.go编译Go程序 On Mac OS export GOARCH=amd64; export GOOS=linux; go build hello.go On Linux go build hello.go编写Dockefile FROM golang:alpine# 选择一个基础镜像 COPY hello /# 将本地的二进制文件拷贝到根目录下 CMD ["/hello"]# 执行制作Docker Image docker build -t yancey_hello . Docker Container 运行一个Docker Container docker run yancey_hello如何区分不同版本的Docker Image?

Docker Storage. Kubernetes中Service机制. Service.

Kubernetes中Service机制

Docker container networking. Estimated reading time: 15 minutes This section provides an overview of Docker’s default networking behavior, including the type of networks created by default and how to create your own user-defined networks.

Docker container networking

It also describes the resources required to create networks on a single host or across a cluster of hosts. Default Networks When you install Docker, it creates three networks automatically. Opsnull/follow-me-install-kubernetes-cluster: 和我一步步部署 kubernetes 集群. GitHub - opsnull/follow-me-install-kubernetes-cluster: 和我一步步部署 kubernetes 集群. Ubuntu 16.04下搭建kubernetes集群环境 - ilinux_one. 简介.

Ubuntu 16.04下搭建kubernetes集群环境 - ilinux_one

Kubernetes 純手作部署在 Ubuntu 16.04. Kubernetes 純手作部署在 Ubuntu 16.04. 理解Kubernetes网络之Flannel网络. Kubernetes 兩步安裝一次上手. 古早時期安裝完整 Kubernetes 的步驟十分繁複,Kubernetes 1.4 之後推出 kubeadm 讓整個安裝過程能在幾分鐘內完成,以下將介紹使用 kubeadm 安裝 Kubernetes 的過程。

Kubernetes 兩步安裝一次上手

Ubuntu 16.04 install.sh 1 2 3 4 5 6 7 8 9 10 apt-get update && apt-get install -y apt-transport-https curl curl -s | apt-key add - cat <<EOF >/etc/apt/sources.list.d/kubernetes.list deb kubernetes-xenial main EOF apt-get update apt-get install -y docker.io apt-get install -y kubelet kubeadm kubectl kubernetes-cni. Kubernetes 純手作部署在 Ubuntu 16.04. Kubernetes初体验 - 时间轨迹. 最近了解了一下Kubernetes,发现对于一个新手想要先简单体验一下Kubernetes,还是会遇到非常多的问题,所以我结合官方的Tutorials以及自己的摸索,写了本篇博客,一方面加深对Kubernetes的理解,另一方面也希望给别人带来一些帮助。

Kubernetes初体验 - 时间轨迹

另外: 我使用的环境是MacOS Sierra 10.12.2+Virtualbox+minikube v0.15+kubectl v1.5.1,不同的环境可能遇到不同的问题,希望多学习交流。 Apache Avro™ 1.8.1 Getting Started (Python) This is a short guide for getting started with Apache Avro™ using Python. This guide only covers using Avro for data serialization; see Patrick Hunt's Avro RPC Quick Start for a good introduction to using Avro for RPC.

Download Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro 1.8.1, the latest version at the time of writing. Download and unzip avro-1.8.1.tar.gz, and install via python setup.py (this will probably require root privileges) . $ tar xvf avro-1.8.1.tar.gz $ cd avro-1.8.1 $ sudo python setup.py install $ python >>> import avro # should not raise ImportError Alternatively, you may build the Avro Python library from source. . $ cd lang/py/ $ ant $ sudo python setup.py install $ python >>> import avro # should not raise ImportError Defining a schema Avro schemas are defined using JSON. This schema defines a record representing a hypothetical user. Microservices with Python, RabbitMQ and Nameko.

"Micro-services is the new black" - Splitting the project in to independently scalable services is the currently the best option to ensure the evolution of the code. In Python there is a Framework called "Nameko" which makes it very easy and powerful. The term "Microservice Architecture" has sprung up over the last few years to describe a particular way of designing software applications as suites of independently deployable services. - M. Fowler I recommend reading the Fowler's posts to understand the theory behind it. Ok I so what does it mean? In brief a Micro Service Architecture exists when your system is divided in small (single context bound) responsibilities blocks, those blocks doesn't know each other, they only have a common point of communication, generally a message queue, and does know the communication protocol and interfaces. Microservices with Python, RabbitMQ and Nameko. Microservice architecture - Software Architecture with Python [Book]

Python: Why to use @wraps with decorators? April 15, 2013 artemrudenko Decorators, Python Decorators, Python Hi, Using decorators can be very helpful but note that it can be very hard to debug the code with them. One of the issue that you can face is based on the decorators nature. Since decorator is simply a function that wraps original one so it will replace function.

Best Regards, Artem. Python - Namespace vs regular package. Virtual Environments — The Hitchhiker's Guide to Python. Virtualenv is a tool to create isolated Python environments. virtualenv creates a folder which contains all the necessary executables to use the packages that a Python project would need. Basic Usage Create a virtual environment for a project: $ cd my_project_folder $ virtualenv my_project virtualenv my_project will create a folder in the current directory which will contain the Python executable files, and a copy of the pip library which you can use to install other packages. The name of the virtual environment (in this case, it was my_project) can be anything; omitting the name will place the files in the current directory instead. This creates a copy of Python in whichever directory you ran the command in, placing it in a folder named my_project. You can also use the Python interpreter of your choice (like python2.7).

Robot Framework User Guide. Robot Framework's actual testing capabilities are provided by test libraries. There are many existing libraries, some of which are even bundled with the core framework, but there is still often a need to create new ones. This task is not too complicated because, as this chapter illustrates, Robot Framework's library API is simple and straightforward. 4.1.2 Creating test library class or module Test libraries can be implemented as Python modules and Python or Java classes. Building Microservices with Python, Part 3 – Sergio Sola – Medium. In previous articles we built the skeleton of the Microservice and the infrastructure needed to run it with Docker.

That means that we can focus now on building the business logic. In this case we are going to do the logic explained in this repository. We are going to build a Microservice to index rooms information coming from another service (crawler). This service will be responsible for indexing the information into Elasticsearch. Here you can see a table with the endpoints we need to build: Building the first endpoint Updating the OpenAPI Spec In this first endpoint, we are going to index rooms to Elasticsearch. As you can see, we include a new post action on the room endpoint. Python IDE to Learn Programming Quickly & Efficiently. Flask-Injector 0.9.0. Adds Injector, a Dependency Injection framework, support to Flask.

Adds Injector support to Flask, this way there’s no need to use global Flask objects, which makes testing simpler. Injector is a dependency-injection framework for Python, inspired by Guice. Flask-Injector is compatible with CPython 3.3+. As of version 0.8.0 it requires Injector version 0.10.0 or greater and Flask 0.11.0 or greater. Welcome to Connexion’s documentation! — Connexion 0.5 documentation. Flask (A Python Microframework) Welcome to Apache Avro! GitHub - ssola/python-flask-microservice: Skeleton of a Microservice built with the Flask. Swagger – The World's Most Popular Framework for APIs.