background preloader

Recurrent neural network

Recurrent neural network
A recurrent neural network (RNN) is a class of neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. This makes them applicable to tasks such as unsegmented connected handwriting recognition, where they have achieved the best known results.[1] Architectures[edit] Fully recurrent network[edit] This is the basic architecture developed in the 1980s: a network of neuron-like units, each with a directed connection to every other unit. For supervised learning in discrete time settings, training sequences of real-valued input vectors become sequences of activations of the input nodes, one input vector at a time. Hopfield network[edit] The Hopfield network is of historic interest although it is not a general RNN, as it is not designed to process sequences of patterns. Related:  Machine Learning

Artificial neural network An artificial neural network is an interconnected group of nodes, akin to the vast network of neurons in a brain. Here, each circular node represents an artificial neuron and an arrow represents a connection from the output of one neuron to the input of another. For example, a neural network for handwriting recognition is defined by a set of input neurons which may be activated by the pixels of an input image. After being weighted and transformed by a function (determined by the network's designer), the activations of these neurons are then passed on to other neurons. This process is repeated until finally, an output neuron is activated. This determines which character was read. Like other machine learning methods - systems that learn from data - neural networks have been used to solve a wide variety of tasks that are hard to solve using ordinary rule-based programming, including computer vision and speech recognition. Background[edit] History[edit] Farley and Wesley A. Models[edit] or both

Restricted Boltzmann machine Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units). A restricted Boltzmann machine (RBM) is a generative stochastic neural network that can learn a probability distribution over its set of inputs. RBMs were initially invented under the name Harmonium by Paul Smolensky in 1986,[1] but only rose to prominence after Geoffrey Hinton and collaborators invented fast learning algorithms for them in the mid-2000s. RBMs have found applications in dimensionality reduction,[2] classification,[3] collaborative filtering, feature learning[4] and topic modelling.[5] They can be trained in either supervised or unsupervised ways, depending on the task. Restricted Boltzmann machines can also be used in deep learning networks. In particular, deep belief networks can be formed by "stacking" RBMs and optionally fine-tuning the resulting deep network with gradient descent and backpropagation.[7] Structure[edit] and visible unit for the visible units and where

Deep learning Branch of machine learning Deep learning is the subset of machine learning methods based on artificial neural networks with representation learning. The adjective "deep" refers to the use of multiple layers in the network. Artificial neural networks (ANNs) were inspired by information processing and distributed communication nodes in biological systems. Definition[edit] Deep learning is a class of machine learning algorithms that[9]: 199–200 uses multiple layers to progressively extract higher-level features from the raw input. From another angle to view deep learning, deep learning refers to "computer-simulate" or "automate" human learning processes from a source (e.g., an image of dogs) to a learned object (dogs). Overview[edit] The word "deep" in "deep learning" refers to the number of layers through which the data is transformed. Deep learning algorithms can be applied to unsupervised learning tasks. Interpretations[edit] History[edit] Deep learning revolution[edit] Neural networks[edit]

Self-organizing map A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of artificial neural network (ANN) that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional), discretized representation of the input space of the training samples, called a map. Self-organizing maps are different from other artificial neural networks in the sense that they use a neighborhood function to preserve the topological properties of the input space. This makes SOMs useful for visualizing low-dimensional views of high-dimensional data, akin to multidimensional scaling. The model was first described as an artificial neural network by the Finnish professor Teuvo Kohonen, and is sometimes called a Kohonen map or network.[1][2] Like most artificial neural networks, SOMs operate in two modes: training and mapping. A self-organizing map consists of components called nodes or neurons. Large SOMs display emergent properties. Learning algorithm[edit] Variables[edit]

Machine Learning Project at the University of Waikato in New Zealand Connectionism Connectionism is a set of approaches in the fields of artificial intelligence, cognitive psychology, cognitive science, neuroscience, and philosophy of mind, that models mental or behavioral phenomena as the emergent processes of interconnected networks of simple units. There are many forms of connectionism, but the most common forms use neural network models. Basic principles[edit] The central connectionist principle is that mental phenomena can be described by interconnected networks of simple and often uniform units. The form of the connections and the units can vary from model to model. For example, units in the network could represent neurons and the connections could represent synapses. Spreading activation[edit] In most connectionist models, networks change over time. Neural networks[edit] Most of the variety among neural network models comes from: Biological realism[edit] Learning[edit] The weights in a neural network are adjusted according to some learning rule or algorithm.

Dimensionality reduction In machine learning and statistics, dimensionality reduction or dimension reduction is the process of reducing the number of random variables under consideration,[1] and can be divided into feature selection and feature extraction.[2] Feature selection[edit] Feature extraction[edit] The main linear technique for dimensionality reduction, principal component analysis, performs a linear mapping of the data to a lower-dimensional space in such a way that the variance of the data in the low-dimensional representation is maximized. Principal component analysis can be employed in a nonlinear way by means of the kernel trick. An alternative approach to neighborhood preservation is through the minimization of a cost function that measures differences between distances in the input and output spaces. Dimension reduction[edit] See also[edit] Notes[edit] Jump up ^ Roweis, S. References[edit] Fodor,I. (2002) "A survey of dimension reduction techniques". External links[edit]

Feedforward neural network In a feed forward network information always moves one direction; it never goes backwards. A feedforward neural network is an artificial neural network where connections between the units do not form a directed cycle. This is different from recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. Single-layer perceptron[edit] The simplest kind of neural network is a single-layer perceptron network, which consists of a single layer of output nodes; the inputs are fed directly to the outputs via a series of weights. A perceptron can be created using any values for the activated and deactivated states as long as the threshold value lies between the two. Perceptrons can be trained by a simple learning algorithm that is usually called the delta rule. (times See also[edit]

Online machine learning Online machine learning is used in the case where the data becomes available in a sequential fashion, in order to determine a mapping from the dataset to the corresponding labels. The key difference between online learning and batch learning (or "offline" learning) techniques, is that in online learning the mapping is updated after the arrival of every new datapoint in a scalable fashion, whereas batch techniques are used when one has access to the entire training dataset at once. Online learning could be used in the case of a process occurring in time, for example the value of a stock given its history and other external factors, in which case the mapping updates as time goes on and we get more and more samples. Ideally in online learning, the memory needed to store the function remains constant even with added datapoints, since the solution computed at one step is updated when a new datapoint becomes available, after which that datapoint can then be discarded. , where on . , such that .

Network science {{Scienc[1] e}} Network science is an interdisciplinary academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks. The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena. Background and history[edit] The study of networks has emerged in diverse disciplines as a means of analyzing complex relational data. In the 1930s Jacob Moreno, a psychologist in the Gestalt tradition, arrived in the United States. Department of Defense Initiatives[edit] As initiated in 2004 by Frederick I.

History of the Perceptron History of the Perceptron The evolution of the artificial neuron has progressed through several stages. The roots of which, are firmly grounded within neurological work done primarily by Santiago Ramon y Cajal and Sir Charles Scott Sherrington . Working from the beginnings of neuroscience, Warren McCulloch and Walter Pitts in their 1943 paper, "A Logical Calculus of Ideas Immanent in Nervous Activity," contended that neurons with a binary threshold activation function were analogous to first order logic sentences. The McCulloch-Pitts neuron worked by inputting either a 1 or 0 for each of the inputs, where 1 represented true and 0 false. This table shows the basic “and” function such that, if x1 and x2 are both false, then the output of combining these two will also be false. This follows also for the “or” function, if we switch the threshold value to 1. One of the difficulties with the McCulloch-Pitts neuron was its simplicity. The activation function then becomes: x = f(b)

Small world experiment The "six degrees of separation" model The small-world experiment comprised several experiments conducted by Stanley Milgram and other researchers examining the average path length for social networks of people in the United States. The research was groundbreaking in that it suggested that human society is a small-world-type network characterized by short path-lengths. The experiments are often associated with the phrase "six degrees of separation", although Milgram did not use this term himself. Historical context of the small-world problem[edit] Mathematician Manfred Kochen and political scientist Ithiel de Sola Pool wrote a mathematical manuscript, "Contacts and Influences", while working at the University of Paris in the early 1950s, during a time when Milgram visited and collaborated in their research. Milgram's experiment was conceived in an era when a number of independent threads were converging on the idea that the world is becoming increasingly interconnected. Results[edit]

Multilayer perceptron A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs. A MLP consists of multiple layers of nodes in a directed graph, with each layer fully connected to the next one. Except for the input nodes, each node is a neuron (or processing element) with a nonlinear activation function. MLP utilizes a supervised learning technique called backpropagation for training the network.[1][2] MLP is a modification of the standard linear perceptron and can distinguish data that are not linearly separable.[3] Theory[edit] Activation function[edit] If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then it is easily proved with linear algebra that any number of layers can be reduced to the standard two-layer input-output model (see perceptron). is the output of the th node (neuron) and Layers[edit] in the , where

How to Burst the "Filter Bubble" that Protects Us from Opposing Views The term “filter bubble” entered the public domain back in 2011when the internet activist Eli Pariser coined it to refer to the way recommendation engines shield people from certain aspects of the real world. Pariser used the example of two people who googled the term “BP”. One received links to investment news about BP while the other received links to the Deepwater Horizon oil spill, presumably as a result of some recommendation algorithm. This is an insidious problem. Much social research shows that people prefer to receive information that they agree with instead of information that challenges their beliefs. This is the filter bubble—being surrounded only by people you like and content that you agree with. And the danger is that it can polarise populations creating potentially harmful divisions in society. The result is that individuals are exposed to a much wider range of opinions, ideas and people than they would otherwise experience. It’s certainly a start.

Related: