background preloader

Carl Friedrich Gauss

Carl Friedrich Gauss
Johann Carl Friedrich Gauss (/ɡaʊs/; German: Gauß, pronounced [ɡaʊs]; Latin: Carolus Fridericus Gauss) (30 April 1777 – 23 February 1855) was a German mathematician who contributed significantly to many fields, including number theory, algebra, statistics, analysis, differential geometry, geodesy, geophysics, mechanics, electrostatics, astronomy, matrix theory, and optics. Sometimes referred to as the Princeps mathematicorum[1] (Latin, "the Prince of Mathematicians" or "the foremost of mathematicians") and "greatest mathematician since antiquity," Gauss had an exceptional influence in many fields of mathematics and science and is ranked as one of history's most influential mathematicians.[2] Early years[edit] Gauss was a child prodigy. There are many anecdotes about his precocity while a toddler, and he made his first ground-breaking mathematical discoveries while still a teenager. The year 1796 was most productive for both Gauss and number theory. Middle years[edit] Religious views[edit] Related:  G

Srinivasa Ramanujan Srinivasa Ramanujan Iyengar FRS (pronunciation: i/sriː.ni.vaː.sə raː.maː.nʊ.dʒən/) (22 December 1887 – 26 April 1920) was an Indian mathematician and autodidact who, with almost no formal training in pure mathematics, made extraordinary contributions to mathematical analysis, number theory, infinite series, and continued fractions. Ramanujan initially developed his own mathematical research in isolation; it was quickly recognized by Indian mathematicians. When his skills became apparent to the wider mathematical community, centred in Europe at the time, he began a famous partnership with the English mathematician G. H. Early life[edit] Ramanujan's home on Sarangapani Street, Kumbakonam Ramanujan was born on 22 December 1887 in Erode, Madras Presidency (now Pallipalayam, Erode, Tamil Nadu), at the residence of his maternal grandparents in a Brahmin family.[5] His father, K. Since Ramanujan's father was at work most of the day, his mother took care of him as a child. is an integer and Mr.

Eight per thousand History[edit] The relations between the Italian State and the religious confessions in its territory can be traced back to the Statuto Albertino of 1848, which applied first to the Kingdom of Sardinia and then to the Kingdom of Italy. Its first article declared the "Roman Catholic Apostolic religion" the only state religion and granted legal toleration to all other religious confessions then present.[2] Under the Lateran treaties of 1929, which were incorporated in the 1948 Constitution of the Italian Republic, the State paid a small monthly salary, called the congrua, to Catholic clergymen as compensation for the nationalization of Church properties at the time of the unification of Italy. Current situation[edit] In 2013 there are 12 possibly beneficiaries of the tax: In addition an agreement has been signed with the Jehovah's Witnesses,[14] but it has not yet received parliamentary ratification. Utilisation[edit] Choices expressed by taxpayers[edit] See also[edit] References[edit]

Jean Giraud 2 Un erratum Michel Langevin, l’un des tapirs de (l’ENS de) Saint-Cloud que j’ai évoqués dans la première partie de cet article, me signale que c’est Fulbert Mignot et non Maurice Mignotte qui fut l’un des autres tapirs. (J’appelle ici « tapir » ce que les normaliens de la rue d’Ulm semblent avoir appelé « caïman », c’est-à-dire un assistant préparateur ; je ne suis d’ailleurs pas certain que ce mot ait été usité à Saint-Cloud, mais c’est celui qui m’est venu.) Cet « incident » a été pour moi l’occasion (agréable) d’avoir de leurs nouvelles... Singularités encore La vie de Jean Giraud dans les années 70 et 80 est en partie liée à la résolution des singularités en caractéristique positive : c’est le cas par exemple de l’histoire de ses rapports avec « les mathématiciens espagnols » ; sans surcharger ce texte d’idées mathématiques, il est inévitable d’en parler un peu. Alexandre Grothendieck, Shreeram Abhyankar et Michael Artin. Heisuke Hironaka L’ENS de Lyon Jean Giraud

The Thirty Greatest Mathematicians Click for a discussion of certain omissions. Please send me e-mail if you believe there's a major flaw in my rankings (or an error in any of the biographies). Obviously the relative ranks of, say Fibonacci and Ramanujan, will never satisfy everyone since the reasons for their "greatness" are different. Following are the top mathematicians in chronological (birth-year) order. Earliest mathematicians Little is known of the earliest mathematics, but the famous Ishango Bone from Early Stone-Age Africa has tally marks suggesting arithmetic. Early Vedic mathematicians The greatest mathematics before the Golden Age of Greece was in India's early Vedic (Hindu) civilization. Top Thales of Miletus (ca 624 - 546 BC) Greek domain Thales was the Chief of the "Seven Sages" of ancient Greece, and has been called the "Father of Science," the "Founder of Abstract Geometry," and the "First Philosopher." Apastambha (ca 630-560 BC) India Pythagoras of Samos (ca 578-505 BC) Greek domain Tiberius(?)

Turn the Ship Around!: A True Story of Turning Followers into Leaders: David Marquet: 9781591846406: Amazon.com Jean Giraud 1 Jean Giraud est décédé le 27 mars 2007, à l’âge de soixante-et-onze ans, des suites d’une insuffisance pulmonaire grave, à l’hôpital de la Croix-Rousse à Lyon où il avait été amené en urgence. Giraud était connu de la communauté mathématique française pour (au moins) trois raisons assez différentes. La plus ancienne est son livre « Non Abelian Cohomology », tiré de sa thèse d’État préparée sous la direction d’Alexandre Grothendieck. Pour toutes ces raisons, et d’autres, Jean Giraud a marqué la mémoire de nombreux mathématiciens. Je ne peux que présenter l’excuse habituelle d’incompétence pour les faiblesses du texte qui va suivre. Une note personnelle : j’ai été un moment l’élève de Giraud ; la relation d’amitié et d’affection qui est venue ensuite en a été marquée et je n’ai jamais réussi (malgré son aide) à le tutoyer ni à l’appeler par son prénom. Famille et premières études JG est né le 2 février 1936 à Lyon cinquième ; puis il a habité à Sathonay-Camp. L’ENS d’Ulm Premier foyer

Virtual Training Suite - free Internet tutorials to develop Internet research skills The Invisible Spotlight: Why Managers Can't Hide: Craig W. Wasserman, Doug Katz: 9781460926017: Amazon.com Edouard Jean-Baptiste Goursat ChronoMath, une chronologie des MATHÉMATIQUES à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges Après des études secondaires à Brive (Corrèze), Goursat "monte" à Paris et sera élève au lycée Henri IV. A sa sortie de l'ENS (École normale supérieure), agrégé de mathématiques (1879, Goursat prépare et obtient son doctorat (Sur l'équation différentielle linéaire qui admet pour intégrale la série hypergéométrique, 1881) et enseigne alors à la faculté des sciences de Toulouse, proche de sa région natale (le Lot). Quatre ans plus tard, Goursat enseignera à l'ENS, à l'École polytechnique (1896), puis à la Sorbonne où il obtient une chaire de calcul différentiel et intégral (1897) succédant à Picard. La notion d'équation aux dérivées partielles : » Formes différentielles exactes ou non et intégration : » Afin de prouver son théorème selon lequel : Cauchy utilisa la condition de continuité de la fonction dérivée de f. ➔ Pour en savoir plus : Pearson Peano

Ring (mathematics) Chapter IX of David Hilbert's Die Theorie der algebraischen Zahlkörper. The chapter title is Die Zahlringe des Körpers, literally "the number rings of the field". The word "ring" is the contraction of "Zahlring". Rings were first formalized as a common generalization of Dedekind domains that occur in number theory, and of polynomial rings and rings of invariants that occur in algebraic geometry and invariant theory. They are also used in other branches of mathematics such as geometry and mathematical analysis. Whether a ring is commutative or not has profound implication in the study of rings as abstract objects, the field called the ring theory. The most familiar example of a ring is the set of all integers, Z, consisting of the numbers The familiar properties for addition and multiplication of integers serve as a model for the axioms for rings. R is an abelian group under addition, meaning: 1. 2. 3. 4. a + b = b + a for all a and b in R (+ is commutative). 5. 6. 8. Equip the set in Z4 is .

Related: