Chaos & Fractals Chaos is a relatively new and exciting science. Although chaos was often unfavorably viewed its early stages, scientists now perform active research in many areas of the field. Presently, there are several journals dedicated solely to the study of chaos. This website was written in conjunction with a talk given for Intermediate Physics Seminar of the Department of Physics and Astronomy at the Johns Hopkins University. It is intended to merely highlight a few of the more interesting aspects in the field of chaos. For further information, please consult the reference section of this document.
Les retracements de Fibonacci : Analyse technique Vous avez surement un jour entendu parlé de la suite de Fibonacci, rappelez vous : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …… Pour les obtenir c’est très simple. Vous additionnez les deux premiers chiffres pour calculer le 3eme. Ainsi 1+1=2 ;1+2=3 ;2+3=5… quelques souvenirs vous reviennent ? Venons en aux nombres d’or maintenant. Le nombre d’or est le rapport entre deux chiffres compris dans cette suite. Tout d’abord on calcule le ratio entre un nombre et son suivant par exemple, 89/144=0.618. Les retracements de Fibonacci : Parlons maintenant de ce pourquoi vous êtes venus, les niveaux de retracements de Fibonacci : 23,6%, 38,2%, 50,0%, 61.8%, 100%. - Une tendance haussière est marquée par des phases de corrections - Une tendance baissière est marquée par des phases de rebonds. Ce sont ces corrections ou rebonds qui sont appelés des retracements. Pour le retracement 38.2%, vous ferez le calcul suivant : 1.4110 - (0.0100 * 38.2%) = 1.4072.
Probability Central Main Page As of July 1, 2013 ThinkQuest has been discontinued. We would like to thank everyone for being a part of the ThinkQuest global community: Students - For your limitless creativity and innovation, which inspires us all. Teachers - For your passion in guiding students on their quest. Partners - For your unwavering support and evangelism. Parents - For supporting the use of technology not only as an instrument of learning, but as a means of creating knowledge. We encourage everyone to continue to “Think, Create and Collaborate,” unleashing the power of technology to teach, share, and inspire. Best wishes, The Oracle Education Foundation
library.thinkquest.org/3703/ As of July 1, 2013 ThinkQuest has been discontinued. We would like to thank everyone for being a part of the ThinkQuest global community: Students - For your limitless creativity and innovation, which inspires us all. Teachers - For your passion in guiding students on their quest. Partners - For your unwavering support and evangelism. Parents - For supporting the use of technology not only as an instrument of learning, but as a means of creating knowledge. We encourage everyone to continue to “Think, Create and Collaborate,” unleashing the power of technology to teach, share, and inspire. Best wishes, The Oracle Education Foundation Codage de Fibonacci Un article de Wikipédia, l'encyclopédie libre. Le codage de Fibonacci est un codage entropique utilisé essentiellement en compression de données . Il utilise les nombres de la suite de Fibonacci , dont les termes ont la particularité d'être composés de la somme des deux termes consécutifs précédents, ce qui lui confère une robustesse aux erreurs. Le code de Fibonacci produit est un code préfixe et universel . Dans ce code, la séquence « 11 » apparaît uniquement en fin de chaque nombre encodé, et sert ainsi de délimiteur. Principe [ modifier ] Codage [ modifier ] Pour encoder un entier X : Créer un tableau avec 2 lignes. Exemple décomposition de 50. Les éléments de la 1 re ligne du tableau sont : 1 2 3 5 8 13 21 34 50 = 34 + 13 + 3 (50 = 34 + 8 + 5 + 3 est incorrect car le 13 n'a pas été utilisé) D'où le tableau : Il reste à écrire le codage du nombre 50 : 001001011 Décodage [ modifier ] Premier exemple Décoder le nombre 10001010011 On effectue la somme : 1 + 8 + 21 + 89 = 119 Deuxième exemple
Golden ratio Line segments in the golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship. Expressed algebraically, for quantities a and b with a > b > 0, The golden ratio is also called the golden section (Latin: sectio aurea) or golden mean.[1][2][3] Other names include extreme and mean ratio,[4] medial section, divine proportion, divine section (Latin: sectio divina), golden proportion, golden cut,[5] and golden number.[6][7][8] Some twentieth-century artists and architects, including Le Corbusier and Dalí, have proportioned their works to approximate the golden ratio—especially in the form of the golden rectangle, in which the ratio of the longer side to the shorter is the golden ratio—believing this proportion to be aesthetically pleasing (see Applications and observations below). Calculation Therefore, Multiplying by φ gives and History
Fibonacci number A tiling with squares whose side lengths are successive Fibonacci numbers In mathematics, the Fibonacci numbers or Fibonacci sequence are the numbers in the following integer sequence: or (often, in modern usage): (sequence A000045 in OEIS). The Fibonacci spiral: an approximation of the golden spiral created by drawing circular arcs connecting the opposite corners of squares in the Fibonacci tiling;[3] this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34. By definition, the first two numbers in the Fibonacci sequence are either 1 and 1, or 0 and 1, depending on the chosen starting point of the sequence, and each subsequent number is the sum of the previous two. In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation with seed values or The Fibonacci sequence is named after Fibonacci. Fibonacci numbers are closely related to Lucas numbers in that they are a complementary pair of Lucas sequences. Origins[edit] List of Fibonacci numbers[edit] and
Podcasts and Downloads - More or Less: Behind the Stats Fibonacci Numbers, the Golden section and the Golden String Fibonacci Numbers and the Golden Section This is the Home page for Dr Ron Knott's multimedia web site on the Fibonacci numbers, the Golden section and the Golden string hosted by the Mathematics Department of the University of Surrey, UK. The Fibonacci numbers are The golden section numbers are 0·61803 39887... = phi = φ and 1·61803 39887... = Phi = Φ The golden string is 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 ... a sequence of 0s and 1s that is closely related to the Fibonacci numbers and the golden section. If you want a quick introduction then have a look at the first link on the Fibonacci numbers and where they appear in Nature. THIS PAGE is the Menu page linking to other pages at this site on the Fibonacci numbers and related topics above. Fibonacci Numbers and Golden sections in Nature Ron Knott was on Melvyn Bragg's In Our Time on BBC Radio 4, November 29, 2007 when we discussed The Fibonacci Numbers (45 minutes). listen again online or download the podcast. and phi . The Golden Section
Divide By Zero About To Divide by Zero is an internet slang term describing an action that leads to an epic failure or theoretically unlikely disaster, such as an earth-shattering apocalypse or a wormhole in the time-space continuum. The concept of division by zero is also associated with the phrase “OH SHI-,” which represents the response of someone that is cut off mid-sentence as a result of the disaster. Origin The earliest known reference to division by zero can be found in a YTMND site titled “1/0 !!!!!!!!!!!!” However, according to Encyclopedia Dramatica, the phrase is said to have originated on 4chan’s /b/ (random) board, with its earliest dating to December 8th, 2006. In Mathematics In math with real numbers, values that represent quantities along a continuous line, division by zero is an undefined operation, meaning it is impossible to have a real number answer to the equation. Spread Mr. Notable Examples Search Interest External References