background preloader

How will we build an artificial human brain?

How will we build an artificial human brain?
Related:  Transhumanismimmortal trendy

Paralyzed Rats Learn to Walk Again Paralyzed rats learned to walk again after a combination of electro-chemical stimulation to their injured spines and intensive rehabilitation therapy. Researchers say the treatment “woke up” dormant or sleeping neurons in their spinal cords, and formed new connections to the brain. Scientists hope the treatment might someday help paralyzed humans. Researchers at the University of Zurich in Switzerland, injected a mixture of chemicals to stimulate the rats' spinal nerve cells, which communicate with the brain. The rats were also placed in a robotic device that looks like a little vest, to support their weight. During the first few weeks after the treatment, lead researcher Grégoire Courtine at the Swiss Federal Institute of Technology of Lausanne says the rats did not move their legs. At the end of six to seven weeks, Courtine says, the rats were able to sprint up stairs, achieving what he calls 100 percent recuperation of voluntary movement.

Re-Evolving Mind, Hans Moravec, December 2000 Computers have permeated everyday life and are worming their way into our gadgets, dwellings, clothes, even bodies. But if pervasive computing soon automates most of our informational needs, it will leave untouched a vaster number of essential physical tasks. Construction, protection, repair, cleaning, transport and so forth will remain in human hands. Robot inventors in home, university and industrial laboratories have tinkered with the problem for most of the century. The first electronic computers in the 1950s did the work of thousands of clerks. But things are changing. The short answer is that, after decades at about one MIPS (million instructions (or calculations) per second), computer power available to research robots shot through 10, 100 and now 1,000 MIPS starting about 1990 (Figure 1). It was a common opinion in the AI labs that, with the right program, readily available computers could encompass any human skill. It's easy to explain the discrepancy in hindsight.

carreau de_peau Touch sensitivity on gadgets and robots is nothing new. A few strategically placed sensors under a flexible, synthetic skin and you have pressure sensitivity. Add a capacitive, transparent screen to a device and you have touch sensitivity. However, Stanford University’s new “super skin” is something special: a thin, highly flexible, super-stretchable, nearly transparent skin that can respond to touch and pressure, even when it’s being wrung out like a sponge. The brainchild of Stanford University Associate Professor of chemical engineering Zhenan Bao, this “super skin” employs a transparent film of spray-on, single-walled carbon nanotubes that sit in a thin film of flexible silicon, which is then sandwiched between more silicon. SEE ALSO: Humanoid Robot Charges Up, Takes a Load Off [VIDEOS] This unique makeup allows the malleable skin to measure force response even as it’s being stretched, or “squeezed like a sponge.”

Mice have different neural subsystem associated with instinctually important smells A new study finds that mice have a distinct neural subsystem that links the nose to the brain and is associated with instinctually important smells such as those emitted by predators. That insight, published online this week in Proceedings of the National Academy of Sciences, prompts the question whether mice and other mammals have specially hardwired neural circuitry to trigger instinctive behavior in response to certain smells. In the series of experiments and observations described in the paper, the authors found that nerve cells in the nose that express members of the gene family of trace amine-associated receptors (TAAR) have several key biological differences from the much more common and diverse neurons that express members of the olfactory receptor gene family. Those other nerve cells detect a much broader range of smells, said corresponding author Gilad Barnea, the Robert and Nancy Carney Assistant Professor of Neuroscience at Brown University. Different circuits and genes

Goertzel Contra Dvorsky on Mind Uploading Futurist pundit George Dvorsky recently posted an article on io9, labeled as “DEBUNKERY” and aimed at the topic of mind uploading. According to the good Mr. Dvorsky, “You’ll Probably Never Upload Your Mind into a Computer.” He briefly lists eight reasons why, in his view, mind uploading will likely never happen. UPDATE - here is a video interview on this subject: Note that he’s not merely arguing that mind uploading may come too late for you and me to take advantage of it – he’s arguing that it probably will never happen at all! The topic of Dvorsky’s skeptical screed is dear to my heart and mind. Every one of Dvorsky's objections has been aired many times before – which is fine, as his post is a journalistic article, not an original scientific or philosophic work, so it doesn’t necessarily have to break new ground. In this article I will briefly run through Dvorsky’s eight objections, and give my own, in some cases idiosyncratic, take on each of them. But, whatever…. So what? True enough.

cognition artifice In the 1950s and '60s, artificial-intelligence researchers saw themselves as trying to uncover the rules of thought. But those rules turned out to be way more complicated than anyone had imagined. Since then, artificial-intelligence (AI) research has come to rely, instead, on probabilities -- statistical patterns that computers can learn from large sets of training data. The probabilistic approach has been responsible for most of the recent progress in artificial intelligence, such as voice recognition systems, or the system that recommends movies to Netflix subscribers. Early AI researchers saw thinking as logical inference: if you know that birds can fly and are told that the waxwing is a bird, you can infer that waxwings can fly. The problem with this approach is, roughly speaking, that not all birds can fly. Embracing uncertainty “With probabilistic reasoning, you get all that structure for free,” Goodman says. Modeling minds

Brain imaging can predict how intelligent you are, study finds (Medical Xpress) -- When it comes to intelligence, what factors distinguish the brains of exceptionally smart humans from those of average humans? As science has long suspected, overall brain size matters somewhat, accounting for about 6.7 percent of individual variation in intelligence. More recent research has pinpointed the brain’s prefrontal cortex, a region just behind the forehead, as a critical hub for high-level mental processing, with activity levels there predicting another 5 percent of variation in individual intelligence. Now, new research from Washington University in St. Published in the Journal of Neuroscience, the findings establish “global brain connectivity” as a new approach for understanding human intelligence. “Our research shows that connectivity with a particular part of the prefrontal cortex can predict how intelligent someone is,” suggests lead author Michael W. This document is subject to copyright.

How Self-Replicating Spacecraft Could Take Over the Galaxy I'm going to re-post here a previous comment I made on this subject, because I think it's worth repeating. Any alien civilization that is sufficiently developed enough to span the cosmos, will be so far advanced from us, that we would not be able to even comprehend their technology and in turn they probably wouldn't even recognise us as a sentient intelligent species. I've always found the "Well if there are aliens why haven't they said hello?" argument to be far too arrogant. There are islands all over the oceans of our world that are nothing more than rocks sticking out of the water with bacteria on them. That's us, the barren rock. The alien probes have probably been through out solar system many times (we'd never know) looked at our skyscrapers, cities and agriculture.

Related: