background preloader

For the Love of Physics (Walter Lewin's Last Lecture)

For the Love of Physics (Walter Lewin's Last Lecture)
Related:  HobbyscienceMécanique

Langley’s Adventitious Angles - Wikipedia Langley’s Adventitious Angles Langley’s Adventitious Angles is a mathematical problem posed by Edward Mann Langley in the Mathematical Gazette in 1922.[1][2] The problem[edit] In its original form the problem was as follows: ABC is an isosceles triangle. Solution[edit] Generalization[edit] A quadrilateral such as BCEF in which the angles formed by all pairs of the six lines joining any two vertices, are rational multiples of π radians, i.e. n*180°/m, is called an adventitious quadrangle. Classifying the adventitious quadrangles (which need not be convex) turns out to be equivalent to classifying all triple intersections of diagonals in regular polygons. References[edit] Jump up ^ Langley, E. External links[edit] Angular Angst, MathPages

The Global Consciousness Project Avistep - Liste de vidéos Présentation Descriptif Le pointage La vidéo Le traitement des données Les fonctionnalités du logiciel en vidéo Consulter l'aide associée au logiciel Exemples de TP en lycée avec Avistep Exemples de vidéo à télécharger Convertir ses fichiers vidéo au format .avi Lecture des vidéos au format .mov et .mp4 Mise à jour de votre ancienne version d'Avistep 3 Version d'essai Avistep 3 réunit tous les outils nécessaires au traitement de la partie mécanique des programmes du collège au lycée. Le pointage Un pointage manuel convivial et innovant : Le pointage automatique : Dessiner manuellement le contour d'un objet dans une image de la vidéo et le logiciel recherche l'objet dans les images suivantes et pointe automatiquement ses positions. - l’étude d’un oscillateur mécanique, qui nécessitait un matériel spécifique d’enregistrement ou la pose fastidieuse de plusieurs centaines de marques, est désormais possible et rapide avec la vidéo. La vidéo La capture vidéo Le montage vidéo L'atelier vidéo Me contacter

Buckminster Fuller and Education's Automation 7 min read You can trace the history of ed-tech through many education philosophies and through many technologies. Too often we fail to trace that history at all – a pity because then we don’t think about the trajectory that our storytelling places us on. And too often, we focus simply on technologies related to the computer and the Internet. One of the things that’s striking about the passages below – taken from a lecture delivered by Buckminster Fuller in 1961 (and published in Education Automation) – is how much his descriptions of educational television and two-way TV sound like today’s MOOCs. I have taken photographs of my grandchildren looking at television. What teaching consists of, according to this framework, is repeating the same “curriculum cards” year after year. Image credits: North Carolina State Archives Fuller predicted that television wouldn’t simply involve the broadcast of one (station, signal) to many (households, individuals).

Adventskalender 2011: Besondere Konstanten für besondere Tage | physikBlog Der physikBlog-Adventskalender 2011 (Codename pB.AK.2011) beschäftigt sich mit tollen Konstanten, Einheiten und Zahlen. Traditionell versüßt das physikBlog euch die letzten vierundzwanzig Tage vor dem Weihnachtsfest mit einem Adventskalender. Dieses Jahr gab’s von uns pro Tag einen Beitrag auf Facebook, in dem wir euch Konstanten, Einheiten und interessante Zahlen vorgestellt haben, die von komplexen Algorithmen aus der Schweiz ausgewählt wurden. Weil wir total für Befreiung sind, haben wir unsere Beiträge aus den Klauen des Facebookkraken geholt und sie hier zusammengefasst. 1. T0= 0 K = -273,15 °C ist die tiefste Temperatur, die man sich so denken kann. 2. 1 AE = 149 597 870 691 m. Möchte man zum Café am Ende des Universums, dann reicht die AE nicht mehr aus. Crazy, was? 3. G64 bezeichnet die Zahl, die ganz allein Ronald Graham gehört. Und das gilt es immer noch, denn bisher hat man nur Grenzen gefunden. Vielleicht habt ihr jetzt eine ungefähre Vorstellung, WIE groß G64 ist. 4. 5. 6.

Chaos theory A double rod pendulum animation showing chaotic behavior. Starting the pendulum from a slightly different initial condition would result in a completely different trajectory. The double rod pendulum is one of the simplest dynamical systems that has chaotic solutions. Chaos: When the present determines the future, but the approximate present does not approximately determine the future. Chaotic behavior can be observed in many natural systems, such as weather and climate.[6][7] This behavior can be studied through analysis of a chaotic mathematical model, or through analytical techniques such as recurrence plots and Poincaré maps. Introduction[edit] Chaos theory concerns deterministic systems whose behavior can in principle be predicted. Chaotic dynamics[edit] The map defined by x → 4 x (1 – x) and y → x + y mod 1 displays sensitivity to initial conditions. In common usage, "chaos" means "a state of disorder".[9] However, in chaos theory, the term is defined more precisely. where , and , is: .

Landing on a Comet, 317 Million Miles From Home Intended landing site Panorama by The New York Times Nov. 6 Comet 67P/C-G is shaped like a duck, with two lobes separated by a neck. RELEASING THE LANDER Rosetta will angle toward the comet and release the Philae lander on Wednesday at 3:35 a.m. Nov. 4 The comet’s head is in the foreground and the body is in the background. Oct. 28 The comet’s neck, seen from 5 miles above the surface. Oct. 24 The rugged surface of the comet’s body casts long shadows and the comet’s neck stretches out of sight at upper right. Oct. 18 Looking up at the underbelly of the duck-shaped comet’s larger lobe. Oct. 8 The underbelly and side of the comet’s larger lobe. ROSETTA The Rosetta spacecraft is a roughly seven-foot cube with a solar-panel wingspan of 105 feet. Oct. 7 Comet 67P/C-G is framed by one of Rosetta’s solar wings, which is 46 feet long. Rosetta RELATIVE SIZE Rosetta’s wingspan of 105 feet is barely visible in this illustration of relative size. Oct. 2 The neck of the comet. Comet’s location when

Everything I Know | The Buckminster Fuller Institute During the last two weeks of January 1975 Buckminster Fuller gave an extraordinary series of lectures concerning his entire life's work. These thinking out loud lectures span 42 hours and examine in depth all of Fuller's major inventions and discoveries from the 1927 Dymaxion house, car and bathroom, through the Wichita House, geodesic domes, and tensegrity structures, as well as the contents of Synergetics. Autobiographical in parts, Fuller recounts his own personal history in the context of the history of science and industrialization. The stories behind his Dymaxion car, geodesic domes, World Game and integration of science and humanism are lucidly communicated with continuous reference to his synergetic geometry. Everything I Know was made available online at archive.org/details/buckminsterfuller. The printed work below is a transcript of those lectures. -- The Buckminster Fuller Institute First Edition Published by the Buckminster Fuller Institute Contact us for more Information

Related: