background preloader

Cognitive Computing

Facebook Twitter

Intelligence artificielle : la course aux bases de données. Indispensables pour alimenter les logiciels d’analyse, les bases de données médicales restent encore parcellaires et parfois difficiles d’accès, en particulier en France.

Intelligence artificielle : la course aux bases de données

Ce marché, dominé par les Etats-Unis, soulève quelques questions éthiques. En médecine comme dans les autres domaines d’application de l’intelligence artificielle (IA), l’accès à des bases de données est un enjeu majeur. « Le sujet des données est primordial. Depuis trois ans c’est le nouveau pétrole. L’intelligence artificielle dope la médecine. Etablir un diagnostic, proposer un traitement, concevoir un médicament : l’intelligence artificielle, adossée au big data et à des capacités de calcul démultipliées, prétend révolutionner la médecine.

L’intelligence artificielle dope la médecine

Adieu radiologues, dermatologues, et ophtalmologistes ? Les médecins des disciplines les plus prestigieuses sont-ils menacés de disparition, remplacés par des docteurs in silico, capables plus rapidement et plus efficacement que le plus expérimenté d’entre eux, de poser un diagnostic précis, choisir le traitement le plus adapté… ? Après des secteurs comme le marketing ou les véhicules autonomes, l’intelligence artificielle (IA) et le big data font une entrée en fanfare dans le monde de la santé, fascinant les uns autant qu’ils laissent sceptiques les autres. Témoin de cette effervescence, le nombre de publications scientifiques explose depuis 2013. Un des derniers exemples en date les plus frappants concerne les tumeurs cutanées.

Reconocimiento de la polaridad semántica – Historia de la Informática. 1.

Reconocimiento de la polaridad semántica – Historia de la Informática

Estado de la cuestión 1.1 Análisis sentimental Dentro del campo de investigación de la minería de datos, haciendo uso de la lingüística computacional, el procesamiento del lenguaje natural (PLN) y el análisis de textos, se halla una disciplina llamada análisis sentimental (sentiment analysis), también citada en la bibliografía como minería de sentimientos (opinion mining) o análisis de subjetividad (subjetiviy analysis). 3rd Platform. Sparking innovation. What is Cognitive Computing? [The following is a video and excerpt from the transcript of Susan Feldman's keynote address at KMWorld 2015.

What is Cognitive Computing?

Susan Feldman is long-time technology analyst and the CEO of Syntexis Cognitive Computing Consortium. To see the full transcript of the video, click here. You can view the video of the keynote at the bottom of this page.] What is Cognitive Computing What goes into cognitive computing? Machine learning is a requirement. What Do Cognitive Systems Do? What do these systems do? This is extremely valuable to competitive organizations, governments, and individuals. Whatís the next leap? Or: Who's funding this terrorist organization, and how are the funds delivered? Another example: Can you identify the most risky product or customer problems? That's the kind of thing that you would want a bunch of humans to sit down and discuss, but there's an awful lot of information to weigh in through. Whitepaperonbenchmarking_V2.

Aprendizaje profundo

At the nexus of information, technology and market trends. [The following article is a transcript of a video of Sue Feldman’s keynote session at KMWorld 2015 in Washington, DC.

At the nexus of information, technology and market trends

View the full session video at Download the slides: Sparking Innovation Innovation is perhaps the biggest test of a knowledge management system. We’re used to capturing information. We’re used to locking it down. Let me start by telling you a story. Ingredients of Innovation. Analytics 3.0. Artwork: Chad Hagen, Nonsensical Infographic No. 5, 2009, digital Those of us who have spent years studying “data smart” companies believe we’ve already lived through two eras in the use of analytics.

Analytics 3.0

We might call them BBD and ABD—before big data and after big data. Or, to use a naming convention matched to the topic, we might say that Analytics 1.0 was followed by Analytics 2.0. Generally speaking, 2.0 releases don’t just add some bells and whistles or make minor performance tweaks. In contrast to, say, a 1.1 version, a 2.0 product is a more substantial overhaul based on new priorities and technical possibilities. Some of us now perceive another shift, fundamental and far-reaching enough that we can fairly call it Analytics 3.0. I’ll develop this argument in what follows, making the case that just as the early applications of big data marked a major break from the 1.0 past, the current innovations of a few industry leaders are evidence that a new era is dawning.

Embedded analytics. Cognitive computing: Beyond the hype. Disruptions happen when three elements converge: market needs, available technologies, and an environment of experimentation and adventure.

Cognitive computing: Beyond the hype

Those all exist today, and cognitive computing is one innovation at that crossroads. Some would argue it is the industry’s most important one. In 2011, when IBM’s Watson soundly defeated the two leading human Jeopardy champions, it alsoestablished cognitive computing as a new phenomenon to be watched. Cognitive computing could become an important new platform for innovation by the industry, but it will require market definition, a far broader level of education than exists today, and a new level of clarity in the conversation to dispel a growing skepticism among industry players and customers alike. As Bob Eccles and Nitin Nohria asked in Beyond the Hype: “Is something fundamental going on, or does today’s craze for newness simply point to our willingness, perhaps even our need, to indulge in the excitement of imaginary revolutions?”

The new element. Cognitive Computing Definition – Cognitive Computing Consortium. 374081. Whitepaperonbenchmarking_V2.