background preloader

Nombre d'or

Facebook Twitter

La géométrie secrète d'un tableau. Extraits de : Charpentes - La géométrie secrète des peintres.

La géométrie secrète d'un tableau

(Charles Bouleau) Dans le chaos pictural de ces dernières années, où la libération exacerbée de l'instinct individuel atteint à la frénésie, vouloir reconnaître les disciplines harmoniques qui, à toutes époques, ont servi secrètement de bases à la peinture pourrait sembler une folie. Mais cette folie est une sagesse. Un savoir nécessaire pour qui veut peindre. Et nécessaire pour qui veut regarder. Jacques Villon (1963) Qu'est-ce que l'art de composer un tableau, et pourquoi nous en a-t-on, du temps de nos études, parlé si peu ?

... Charles Bouleau Giotto, Saint François Il fait jaillir l'eau de la montagne pour désaltérer un paysan. Le rabattement des petits côtés du rectangle est ici employé sous sa forme la plus simple. François Murez, Le Mont Blanc La composition de ce tableau obéit aux règles classiques du rabattement des petits côtés du rectangle. Le nombre d'or. Jean-Paul Delahaye affirme (pour la Science Août 1999) que le chemin des mathématiques à la numérologie est dangereux parce riche en interprétations...

Le nombre d'or

En effet des milliers de pages ont été écrites sur le nombre d'or, baptisé Φ. Il serait connu depuis la nuit des temps. On le retrouve chez les peintres du début du siècle, dans les cathédrales gothiques, sur les façades des temples grecs et même au cœur de la Grande Pyramide. On dit qu'il aurait été transmis de bouche de pyhtagoricien à oreille d'initié, comme un secret universel et immuable (il n'était pas considéré comme un nombre puisque seuls les entiers sont des nombres chez les grecs).

De nombreux tableaux seraient conçus selon les règles de la "divine proportion" (expression datant de 1509 avec Léonard de Vinci). Rythmes musicaux Aux mesures traditionnelles à deux ou à trois temps, 2/1 ou 3/2 s’ajoutent des éléments rythmiques de type 5/3 ou 8/5 (jazz ou musique orientale…) Nous retrouvons la suite 1-1 2-3-5-8… de Fibonacci. Le nombre d'or dans la peinture, l'architecture et la nature. De nos jours, nous pouvons dire qu’il existe deux types de nature : la nature végétale et la nature animal.

Le nombre d'or dans la peinture, l'architecture et la nature

En les examinant de plus près nous pouvons remarquer que toutes deux peuvent présenter la suite de Fibonacci ainsi que les proportions d’Euclide. De ce fait, nous pouvons dire que le nombre d’or est présent partout dans la nature. La suite de Fibonacci fut créée par un célèbre mathématicien italien : Leonardo Fibonacci au XII ème siècle.

Cette suite commence par 0 et 1 (ses deux premiers termes). A partir du rang numéro 2, il suffit d’additionner les deux termes précédents afin de trouver les termes suivants. A travers cette démonstration, nous allons prouver le lien existant entre la suite de Fibonacci et le nombre d’or. Nous avons vu précédemment que la suite de Fibonacci était définie à partir de 0 et 1. Nous pouvons alors poser la relation suivante avec n appartenant à l'ensemble d'entiers naturels (grâce à la définition de la suite de fibonacci exprimé ci-dessus) : Δ= b²- 4ac. La composition et le nombre d'or.

Construction composition,esquisse,regard,accrochage oeuvre,nombre d’or,composition artistique,

La composition et le nombre d'or

Le nombre d'or. L' histoire ...

Le nombre d'or

Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or (temple d'Andros découvert sous la mer des Bahamas). 2800 av JC : La pyramide de Khéops a des dimensions qui mettent en évidence l'importance que son architecte attachait au nombre d'or. Vè siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d'or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d'Athéna Parthénos .

Il utilise également la racine carrée de 5 comme rapport. IIIè siècle avant J-C. : Euclide évoque le partage d'un segment en "extrême et moyenne raison" dans le livre VI des Eléments. 1498 : Fra Luca Pacioli, un moine professeur de mathématiques, écrit De divina proportione ("La divine proportion"). Au cours du XXème siècle : des peintres tels Dali et Picasso, ainsi que des architectes comme Le Corbusier, eurent recours au nombre d'or. Nombre d'or. Le nombre d’or existe.

nombre d'or

Il s’agit de la proportion selon laquelle le rapport entre deux parties est égal au rapport entre la plus grande de ces parties et le tout. C’est un nombre irrationnel : (1 + √5) / 2. Soit 1,618039887... et un nombre infini de décimales. On le trouve notamment obligatoirement dans certaines figures géométriques comme rapport entre longueurs incommensurables. En particulier dans tout ce qui est pentagonal (au même titre que √2 intervient dans le carré, √3 dans le cube, pi dans le cercle…). Je renvoie à l'article "nombre d'or" de wikipédia ou au Que sais-je ?

Car, de ce nombre, bien des usages sont faits qui sortent de la mathématique.