background preloader

Signal Processing

Facebook Twitter

Fun with Java, Understanding the Fast Fourier Transform (FFT) Algorithm. Java Programming, Notes # 1486 Preface Programming in Java doesn't have to be dull and boring.

Fun with Java, Understanding the Fast Fourier Transform (FFT) Algorithm

In fact, it's possible to have a lot of fun while programming in Java. This lesson is one in a series that concentrates on having fun while programming in Java. Viewing tip You may find it useful to open another copy of this lesson in a separate browser window. Supplementary material I recommend that you also study the other lessons in my extensive collection of online Java tutorials. General Discussion. Digital Signal Processing Central. The Scientist and Engineer's Guide to Digital Signal Processing. Teaching. Time period frequency formula cycle duration periodic time period to frequency wavelength calculation calculate calculator Hz hertz to ms T to f worksheet definition. ● Frequencyformula − Conversion and calculation ●Period, cycle duration, periodic time, timeT to frequencyf,and frequency f to cycle duration or period T ● T = 1 / f and f = 1 / T− hertz to milliseconds and frequency to angular frequency The only kind of periods meant by people who use this phrase are periods of time, so it's a redundancy.

Time period frequency formula cycle duration periodic time period to frequency wavelength calculation calculate calculator Hz hertz to ms T to f worksheet definition

Simply say "time" or "period. " <table><tr><td bgcolor="#0000FF"><span><b>The used browser does not support JavaScript. <br />You will see the program but the function will not work. </b></span></td></tr></table> Fill out the gray box above and click at the calculation bar of the respective column. Frequency means oscillations (cycles) per second in Hz = hertz = 1/s. 1 second = 1000 ms and 1 ms = 0.001 seconds. 1 hertz = 1 Hz = cps = cycles per second. Oszilloscope: Input of the boxes (Div.) and timebase (Y) give the frequency.

How to Interpolate in the Time-Domain by Zero-Padding in the Frequency Domain. By Rick Lyons Performing interpolation on a sequence of time-domain samples is an important (often used) process in DSP, and there are many descriptions of time-domain interpolation (a kind of curve fitting) in the literature and on the Internet.

How to Interpolate in the Time-Domain by Zero-Padding in the Frequency Domain

However, there’s a lesser-known scheme used for interpolation that employs the inverse discrete Fourier transform (IDFT). This little tutorial attempts to describe that technique. One of the fundamental principles of discrete signals is that "zero padding" in one domain results in an increased sampling rate in the other domain. For example, the most common form of zero padding is to append a string of zero-valued samples to the end of some time-domain sequence. Figure 1 If, on the other hand, we zero pad (append) 96 zero-valued samples to the end of w(n), we’ll have the 128-sample w’(n) sequence shown in Figure 1(c). F r e e U K - FreeUK Broadband - If you are the owner of this website then please read the following information.

F r e e U K - FreeUK Broadband -

The reason why your website is unavailable. Historically, FreeUK provided webspace for customers to use as an additional free service as part of their Dial-up or Broadband connections. According to our records, the Dial-up or Broadband service that this webspace was associated to has now been cancelled and the website is currently offline as a result. If you wish to retain your website this is what you need to do.

Beamforming. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal on a transducer array.

Beamforming

Using beamforming you can direct the majority of signal energy you transmit from a group of transducers (like audio speakers or radio antennae) in a chosen angular direction. Or you can calibrate your group of transducers when receiving signals such that you predominently receive from a chosen angular direction. The physics and math are essentially the same for both the transmitting and receiving cases, so I will concentrate on the transmission case to explain the concept further. I should mention as well that there are a few general approaches to directing this signal energy, but by far the most common is having a slightly different signal go out of (or into) each transducer in your group; this is the approach I discuss here. In the plotted examples I've made, I've simply used a sin() function for s(t), but it could be anything. Matlab - FFT and Zero Padding. DSP - An open source C# Complex Number and FFT library for Microsoft .NET. Exocortex.DSP An open source C# Complex Number and FFT library for Microsoft .NET 2.

DSP - An open source C# Complex Number and FFT library for Microsoft .NET

Demos 4. Releases All source files, Visual Studio .NET 2003 project files, binaries, XML documentation and demos are included in one package. 5. Other contributors are welcome. 6. 7. March 8, 2002 - Initial Release March 20, 2002 - Added the 2 demo applications March 22, 2002 - Added ComplexStats class March 27, 2002 - Updated webpage design May 4, 2002 - Fixed a bug in the division operator in both Complex.cs and ComplexF.cs -- the complex component of the result was being calculated incorrectly.