background preloader

Brane

Brane
In string theory and related theories, D-branes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a D-brane. The letter "D" in D-brane refers to the fact that we impose a certain mathematical condition on the system known as the Dirichlet boundary condition. See also[edit] References[edit] Jump up ^ Moore, Gregory (2005).

Spontaneous symmetry breaking Consider the bottom of an empty wine bottle, a symmetrical upward dome with a trough for sediment. If a ball is put in a particular position at the peak of the dome, the circumstances are symmetrical with respect to rotating the wine bottle. But the ball may spontaneously break this symmetry and move into the trough, a point of lowest energy. The bottle and the ball continue to have symmetry, but the system does not.[4] Most simple phases of matter and phase-transitions, like crystals, magnets, and conventional superconductors can be simply understood from the viewpoint of spontaneous symmetry breaking. Notable exceptions include topological phases of matter like the fractional quantum Hall effect. Spontaneous symmetry breaking in physics[edit] Spontaneous symmetry breaking simplified: - At high energy levels (left) the ball settles in the center, and the result is symmetrical. Particle physics[edit] Chiral symmetry[edit] Higgs mechanism[edit] Condensed matter physics[edit] , where such that .

Eternal inflation Eternal inflation is predicted by many different models of cosmic inflation. MIT professor Alan H. Guth proposed an inflation model involving a "false vacuum" phase with positive vacuum energy. Alan Guth's 2007 paper, "Eternal inflation and its implications",[1] details what is now known on the subject, and demonstrates that this particular flavor of inflationary universe theory is relatively current, or is still considered viable, more than 20 years after its inception.[2] [3][4] Inflation and the multiverse[edit] Both Linde and Guth believe that inflationary models of the early universe most likely lead to a multiverse but more proof is required. It's hard to build models of inflation that don't lead to a multiverse. It's possible to invent models of inflation that do not allow [a] multiverse, but it's difficult. Polarization in the cosmic microwave background radiation suggests inflationary models for the early universe are more likely but confirmation is needed.[5] History[edit]

String (physics) In physics, a string is a physical object that appears in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended objects. Theories in which the fundamental objects are strings rather than point particles automatically have many properties that are expected to hold in a fundamental theory of physics. Most notably, a theory of strings that evolve and interact according to the rules of quantum mechanics will automatically describe quantum gravity. In string theory, the strings may be open (forming a segment with two endpoints) or closed (forming a loop like a circle) and may have other special properties. In theories of particle physics based on string theory, the characteristic length scale of strings is typically on the order of the Planck length, the scale at which the effects of quantum gravity are believed to become significant. Strings can be either open or closed.

Ergodic hypothesis The ergodic hypothesis is often assumed in the statistical analysis of computational physics. The analyst would assume that the average of a process parameter over time and the average over the statistical ensemble are the same. This assumption that it is as good to simulate a system over a long time as it is to make many independent realizations of the same system is not always correct. (See, for example, the Fermi–Pasta–Ulam experiment of 1953.) Phenomenology[edit] In macroscopic systems, the timescales over which a system can truly explore the entirety of its own phase space can be sufficiently large that the thermodynamic equilibrium state exhibits some form of ergodicity breaking. However, complex disordered systems such as a spin glass show an even more complicated form of ergodicity breaking where the properties of the thermodynamic equilibrium state seen in practice are much more difficult to predict purely by symmetry arguments. Mathematics[edit] See also[edit] Notes[edit]

Antimatter In particle physics, antimatter is material composed of antiparticles, which have the same mass as particles of ordinary matter but have opposite charge and other particle properties such as lepton and baryon number. Encounters between particles and antiparticles lead to the annihilation of both, giving rise to varying proportions of high-energy photons (gamma rays), neutrinos, and lower-mass particle–antiparticle pairs. Setting aside the mass of any product neutrinos, which represent released energy which generally continues to be unavailable, the end result of annihilation is a release of energy available to do work, proportional to the total matter and antimatter mass, in accord with the mass-energy equivalence equation, E=mc2.[1] Antiparticles bind with each other to form antimatter just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton can form an antihydrogen atom. History of the concept Notation Positrons

Metaverse The Metaverse is a collective virtual shared space, created by the convergence of virtually enhanced physical reality and physically persistent virtual space,[1] including the sum of all virtual worlds, augmented reality, and the internet. The word metaverse is a portmanteau of the prefix "meta" (meaning "beyond") and "universe" and is typically used to describe the concept of a future iteration of the internet, made up of persistent, shared, 3D virtual spaces linked into a perceived virtual universe.[2] Developing technical standards for the Metaverse[edit] Conceptually, the Metaverse describes a future internet of persistent, shared, 3D virtual spaces linked into a perceived virtual universe,[2] but common standards, interfaces, and communication protocols between and among virtual environment systems are still in development. Many of these working groups are still in the process of publishing drafts and determining open standards for interoperability. [edit] [edit] See also[edit]

Spin (physics) In quantum mechanics and particle physics, spin is an intrinsic form of angular momentum carried by elementary particles, composite particles (hadrons), and atomic nuclei.[1][2] Spin is a solely quantum-mechanical phenomenon; it does not have a counterpart in classical mechanics (despite the term spin being reminiscent of classical phenomena such as a planet spinning on its axis).[2] Spin is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. Orbital angular momentum is the quantum-mechanical counterpart to the classical notion of angular momentum: it arises when a particle executes a rotating or twisting trajectory (such as when an electron orbits a nucleus).[3][4] The existence of spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which particles are observed to possess angular momentum that cannot be accounted for by orbital angular momentum alone.[5] where h is the Planck constant.

Philosophy of space and time Philosophy of space and time is the branch of philosophy concerned with the issues surrounding the ontology, epistemology, and character of space and time. While such ideas have been central to philosophy from its inception, the philosophy of space and time was both an inspiration for and a central aspect of early analytic philosophy. The subject focuses on a number of basic issues, including whether or not time and space exist independently of the mind, whether they exist independently of one another, what accounts for time's apparently unidirectional flow, whether times other than the present moment exist, and questions about the nature of identity (particularly the nature of identity over time). Ancient and medieval views[edit] The earliest recorded Western philosophy of time was expounded by the ancient Egyptian thinker Ptahhotep (c. 2650–2600 BC), who said, "Do not lessen the time of following desire, for the wasting of time is an abomination to the spirit." Leibniz and Newton[edit]

Elementary particle In particle physics, an elementary particle or fundamental particle is a particle whose substructure is unknown, thus it is unknown whether it is composed of other particles.[1] Known elementary particles include the fundamental fermions (quarks, leptons, antiquarks, and antileptons), which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons (gauge bosons and Higgs boson), which generally are "force particles" that mediate interactions among fermions.[1] A particle containing two or more elementary particles is a composite particle. Everyday matter is composed of atoms, once presumed to be matter's elementary particles—atom meaning "indivisible" in Greek—although the atom's existence remained controversial until about 1910, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy.[1][2] Soon, subatomic constituents of the atom were identified. Overview[edit] Main article: Standard Model

Shape of the Universe Local and global geometry of the universe In physical cosmology, the shape of the universe refers to both its local and global geometry. Local geometry is defined primarily by its curvature, while the global geometry is characterised by its topology (which itself is constrained by curvature). General relativity explains how spatial curvature (local geometry) is constrained by gravity. The global topology of the universe cannot be deduced from measurements of curvature inferred from observations within the family of homogeneous general relativistic models alone, due to the existence of locally indistinguishable spaces with varying global topological characteristics. Shape of the observable universe [edit] The universe's structure can be examined from two angles: Local geometry: This relates to the curvature of the universe, primarily concerning what we can observe.Global geometry: This pertains to the universe's overall shape and structure. Curvature of the universe Ωmass ≈ 0.315±0.018

Related: