background preloader

Ulam spiral

Ulam spiral of size 200×200. Black dots represent prime numbers. Diagonal, vertical, and horizontal lines with a high density of prime numbers are clearly visible. The Ulam spiral, or prime spiral (in other languages also called the Ulam Cloth) is a simple method of visualizing the prime numbers that reveals the apparent tendency of certain quadratic polynomials to generate unusually large numbers of primes. It was discovered by the mathematician Stanislaw Ulam in 1963, while he was doodling during the presentation of a "long and very boring paper" at a scientific meeting. In an addendum to the Scientific American column, Gardner mentions work of the herpetologist Laurence M. Construction[edit] Ulam constructed the spiral by writing down a regular rectangular grid of numbers, starting with 1 at the center, and spiraling out: He then circled all of the prime numbers and he got the following picture: To his surprise, the circled numbers tended to line up along diagonal lines. Variants[edit]

3 awesome free Math programs Posted by Antonio Cangiano in Software on June 2nd, 2007 | 109 responses Mathematical software can be very expensive. Programs like Mathematica, Maple and Matlab are incredibly powerful, flexible and usually well documented and supported. Their price tags however are a big let down for many people, even if there are cheap (in some cases crippled) versions available for educational purposes (if you are a student or a teacher). 1. A general purpose CAS (Computer Algebra System) is a program that’s able to perform symbolic manipulation for the resolution of common problems. Valuable mentions are: 2. Matlab is the standard for numerical computing, but there are a few clones and valid alternatives that are entirely free. Valid alternatives are: For statistical computing and analysis in the Open Source world, it doesn’t get any better than R. As usual, please feel free to share your experiences and add your suggestions to enrich the discussion.

High School Mathematics Extensions/Discrete Probability Introduction[edit] Probability theory is one of the most widely applicable mathematical theories. It deals with uncertainty and teaches you how to manage it. It is simply one of the most useful theories you will ever learn. Please do not misunderstand: We are not learning to predict things; rather, we learn to utilise predicted chances and make them useful. Therefore, we don't care about questions like what is the probability it will rain tomorrow? As suggested above, a probability is a percentage, and it's between 0% and 100% (inclusive). Application[edit] You might ask why we are even studying probability. Consider the following gambling game: Toss a coin; if it's heads, I give you $1; if it's tails, you give me $2. Another real-life example: I observed one day that there are dark clouds outside. In real life, probability theory is heavily used in risk analysis by economists, businesses, insurance companies, governments, etc. Why discrete probability? Event and Probability[edit] 1. 2. 3.

A 10 minute tutorial for solving Math problems with Maxima Posted by Antonio Cangiano in Essential Math, Software on June 4th, 2007 | 132 responses About 50,000 people read my article 3 awesome free Math programs. Chances are that at least some of them downloaded and installed Maxima. Maxima as a calculator You can use Maxima as a fast and reliable calculator whose precision is arbitrary within the limits of your PC’s hardware. (%i1) 9+7; (%o1) (%i2) -17*19; (%o2) (%i3) 10/2; (%o3) Maxima allows you to refer to the latest result through the % character, and to any previous input or output by its respective prompted %i (input) or %o (output). (%i4) % - 10; (%o4) (%i5) %o1 * 3; (%o5) For the sake of simplicity, from now on we will omit the numbered input and output prompts produced by Maxima’s console, and indicate the output with a => sign. float(1/3); => float(26/4); => As mentioned above, big numbers are not an issue: float((7/3)^35); => Constants and common functions Here is a list of common constants in Maxima, which you should be aware of: log(%e); =>

Santé | Jeunes et minces? Les maths contre la retouche photo Des chercheurs du Dartmouth College ont mis au point un algorithme capable de déterminer quand une photo a été retouchée hors de proportion par des outils comme Photoshop, un procédé abondamment utilisé dans les photos de mode et dans les magazines de célébrités et dénoncé par les spécialistes en santé publique. Le logiciel mis au point par Hani Farid, décrit dans une publication dans les Proceedings of the National Academy of Sciences, permettrait de quantifier la retouche effectuée sur une photo, et donc de déterminer objectivement à partir de quand on exagère. Cet outil pourrait permettre de lutter plus facilement contre ces images dont on sait qu’elles nuisent à la bonne santé et à l’estime de soi de ceux et celles qui les regardent. Sur son site, le chercheur donne en exemple quelques images avant/après analysées par son logiciel. (mesdames, si vous craquez pour le beau George Clooney, vous risquez d’avoir tout un choc.

Introduction Many of the articles on this Web site are versions of the Fermi Problem described in the first section. Others are essays - some short, some long. Some are merely attempts to come to terms with basic concepts, such as the 'size' of the speed of light or the number 'one trillion'. Others discuss more advanced concepts. The energy density article was written to fill a gap, which I noted in books on Special Relativity. The earlier pieces are nowhere near so involved, and require only a little number skill and, possibly, some high school algebra. There are many cases in science, and even in everyday life, when we encounter seemingly insolvable problems such as this. And most of all, remember to have fun!

De l’inexactitude dans nos ordinateurs S’il y a bien un endroit où l’on peut être certain des informations que l’on traite, c’est dans les puces de nos ordinateurs. Mais ceci pourrait bien changer grâce aux travaux conjugués de plusieurs instituts... Les Université Rice, de Californie, de Berkeley, de Nanyang à Singapour et le Centre d’Electronique et Microtechnologie de Suisse travaillent sur le projet d’une puce informatique tolérant l’erreur depuis 2003. Les chercheurs se sont en effet aperçus que les traitements et le matériel nécessaires pour annihiler le taux d’erreur demandaient beaucoup d’énergie et faisaient baisser les performances. Attention cela dit, il ne s’agit pas ici d’annuler toutes vérifications, ces “puces inexactes” doivent garantir un taux d’erreur acceptable selon son utilisation. Ci-dessous, un exemple d’une photo, à droite, ayant 7,58% d’erreur par rapport à celle de gauche : Cette “inexactitude” est à rapprocher de la logique floue, perception qui commence à toucher la micro-informatique. [theverge]

Handy Mathematics Facts for Graphics email scd@cs.brown.edu with suggested additions or corrections Eric Weisstein's world of Mathematics (which used to be called Eric's Treasure Trove of Mathematics) is an extremely comprehensive collection of math facts and definitions. Eric has other encyclopedias at www.treasure-troves.com S.O.S. Mathematics has a variety of algebra, trigonometry, calculus, and differential equations tutorial pages. Dave Eberly has a web site called Magic Software with several pages of descriptions and code that answers questions from comp.graphics.algorithms. Steve Hollasch at Microsoft has a very comprehensive page of graphics notes which he would like to turn into a graphics encyclopedia. Vector math identities and algorithms from Japan. Paul Bourke has a variety of pages with useful tidbits, many of which are linked to from Steve Hollasch's page. The graphics group at UC Davis also has notes about computer graphics. Peter H. Josh Levenberg has a page of links to yet more graphics algorithm resources. e pi

Un monde de fractales dans un fichier de 4 kilobytes Accueil Gizmodo Buzz Un monde de fractales dans un fichier de 4 kilobytes Dans un monde où les effets spéciaux sont légion, à coup de millions de dollars de moyens, nous sommes toujours émerveillés en trouvant de bons visuels à moindres frais. Ce que vous allez voir là force le respect. “Hartverdrahtet”, c’est le nom de la séquence présentée ici. L’auteur, Demoscene Passivist, indique qu’il lui a fallu pas mois de deux mois de travail pour faire tenir son projet dans seulement 4 kilobytes. [theverge] Dernières Questions sur Gizmodo Help Quantum Random Bit Generator Service Cryptographie Un article de Wikipédia, l'encyclopédie libre. La machine de Lorenz utilisée par les Allemands durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre le quartier-général du Führer et les quartiers-généraux des groupes d'armées Elle est utilisée depuis l'Antiquité, mais certaines de ses méthodes les plus importantes, comme la cryptographie asymétrique, datent de la fin du XXe siècle. Étymologie et vocabulaire[modifier | modifier le code] Le mot cryptographie vient des mots en grec ancien kruptos (« caché ») et graphein (« écrire »). À cause de l'utilisation d'anglicismes puis de la création des chaînes de télévision dites « cryptées », une grande confusion règne concernant les différents termes de la cryptographie : Histoire[modifier | modifier le code] Utilisé depuis l'antiquité, l'une des utilisations les plus célèbres pour cette époque est le chiffre de César, nommé en référence à Jules César qui l'utilisait pour ses communications secrètes.

Archimedean Solid The 13 Archimedean solids are the convex polyhedra that have a similar arrangement of nonintersecting regular convex polygons of two or more different types arranged in the same way about each vertex with all sides the same length (Cromwell 1997, pp. 91-92). The Archimedean solids are distinguished by having very high symmetry, thus excluding solids belonging to a dihedral group of symmetries (e.g., the two infinite families of regular prisms and antiprisms), as well as the elongated square gyrobicupola (because that surface's symmetry-breaking twist allows vertices "near the equator" and those "in the polar regions" to be distinguished; Cromwell 1997, p. 92). The Archimedean solids are sometimes also referred to as the semiregular polyhedra. The Archimedean solids are illustrated above. Nets of the Archimedean solids are illustrated above. The following table lists the uniform, Schläfli, Wythoff, and Cundy and Rollett symbols for the Archimedean solids (Wenninger 1989, p. 9). , edges where

04/05 > BE Allemagne 566 > Les mathématiques pour optimiser le marché des énergies renouvelables EnergieLes mathématiques pour optimiser le marché des énergies renouvelables Les gestionnaires des réseaux de distribution sont par définition responsables de la fourniture d'électricité. A ce titre, ils doivent à tout instant estimer les différentes quantités de production d'électricité afin de répondre à l'ensemble des besoins de consommation. Des chercheurs du centre d'application Fraunhofer d'Illmenau (Thuringe), en collaboration avec l'entreprise gestionnaire de réseaux Tennet Teso GmbH, ont développé un programme de calcul performant pour préciser et simplifier la prédiction de production d'électricité d'origine renouvelable. Ce programme, qui rend possible l'affinage des mécanismes de marché, devrait également permettre de diminuer le recourt aux "énergies d'équilibrage", généralement issues de centrales thermiques en Allemagne.

Spatial references, coordinate systems, projections, datums, ell People are often mixing the above as if they were one and the same, so here’s a recap of them. One of the things you often find people saying is that “my data is in the WGS84 coordinate system”. This doesn’t really make sense, but I will get back to this later. This is a very confusing subject, and I might have gotten a few things wrong myself, so please add a comment and I’ll update it ASAP. Coordinate systems A coordinate system is simply put a way of describing a spatial property relative to a center. The Geocentric coordinate system is based on a normal (X,Y,Z) coordinate system with the origin at the center of Earth. Sidenote: The geocentric coordinate system is strictly speaking a cartesian coordinate system too, but this is the general terms I've seen used the most when talking about world coordinate systems. Datums and ellipsoids This poses two immediate problems: Where is the center of the earth What is the shape of the earth? Read more on Datums and Spheroids. Projections

Related: