Qubit
Un article de Wikipédia, l'encyclopédie libre. Ne doit pas être confondu avec une cubit (ou coudée), ancienne mesure d'environ 45 centimètres. Définition[modifier | modifier le code] Superposition d'états[modifier | modifier le code] Le qubit se compose d'une superposition de deux états de base, par convention nommés |0> et |1> (prononcés : ket 0 et ket 1[1]). Un bit classique se trouve toujours soit dans l'état 0, soit dans l'état 1. , les coefficients étant des nombres complexes vérifiant . est un nombre réel positif, car multiplier un état par un nombre complexe de module 1 donne le même état. On dit souvent que le qubit se trouve soit dans l'état 0, soit dans l'état 1, soit dans une superposition des deux. Mesure[modifier | modifier le code] Lors de la mesure de la valeur du qubit, les seules réponses pouvant être obtenues sont 0 ou 1. , tandis que celle de mesurer l'état 1 vaut . Propriétés[modifier | modifier le code] Copie de l'information[modifier | modifier le code] et . , avec . .
Décohérence quantique
Un article de Wikipédia, l'encyclopédie libre. La décohérence quantique est une théorie susceptible d'expliquer la transition entre les règles physiques quantiques et les règles physiques classiques telles que nous les connaissons, à un niveau macroscopique. Plus spécifiquement, cette théorie apporte une réponse, considérée comme étant la plus complète à ce jour, au paradoxe du chat de Schrödinger et au problème de la mesure quantique. La théorie de la décohérence a été introduite par Hans Dieter Zeh en 1970[1]. Elle a reçu ses premières confirmations expérimentales en 1996[2]. Introduction[modifier | modifier le code] Tous les objets décrits par la physique classique (projectile, planète, chat, etc.) étant composés, en dernière analyse, d'atomes et de particules, et ces derniers étant décrits entièrement par la physique quantique, il est logique de considérer que les règles de la physique classique peuvent se déduire de celles de la physique quantique. Durée[modifier | modifier le code] ou
OVER LOVEFLOW BODYLOTION BEING Capture d’écran 2015 02 22 à 08 16 44
L'ordinateur quantique
L’ordinateur quantique Une révolution technologique (I) Depuis l’invention du premier circuit intégré monolithique par Jack Kilby de Texas Instruments en 1958, l’intégration des composants électroniques n’a cessé d’être améliorée au point que nous parvenons aujourd’hui à faire fonctionner des centaines de milliers de composants sur une puce (chip) mesurant à peine 1 cm2, c’est la technologie ULSI (Ultra Large Scale Integration) qui détrône aujourd’hui le VLSI. Mais à ce niveau de miniaturisation la difficulté de fabrication devient digne d’une mission impossible. Pour supprimer ces difficultés, en 1982 le prix Nobel de physique Richard Feynman imagina l’ordinateur quantique, un ordinateur disait-il capable de "simuler la physique, [de réaliser] une simulation exacte, de faire exactement la même chose que la nature". Pour tester ses performances en calcul pur, il fallait trouver un programme adapté à cette nouvelle architecture. Voici le compte-rendu de ces recherches. 1. 2. 3. 4.
Algorithme de Shor
Un article de Wikipédia, l'encyclopédie libre. En arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique pour factoriser un entier naturel N en temps O et en espace , nommé en l'honneur de Peter Shor. Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implémenté dans un calculateur quantique pratique. pour n'importe quel k, donc, les algorithmes classiques connus deviennent rapidement impraticables quand N augmente, à la différence de l'algorithme de Shor qui peut casser le RSA en temps polynomial. Comme tous les algorithmes pour calculateur quantique, l'algorithme de Shor est probabiliste : il donne la réponse correcte avec une haute probabilité et la probabilité d'échec peut être diminuée en répétant l'algorithme. L'algorithme de Shor fut utilisé en 2001 par un groupe d'IBM, qui factorisa 15 en 3 et 5, en utilisant un calculateur quantique de 7 qubits. I. II.
OBSOLESCENCE PROGRAMMACHINE // Capture d’écran 2015 02 24 à 08 22 01
L'ordinateur quantique (construction)
Fabrication d’un ordinateur quantique (II) Depuis les travaux d'Einstein et consorts sur le paradoxe EPR en 1935 démontrant que l'intrication quantique était une réalité, de nombreuses expériences ont démontré qu'il était possible de contrôler l'intrication quantique entre deux photons, deux atomes, deux ions, dans des systèmes à semi-conducteurs tels que des spins d'ions, de noyaux et des points quantiques,,, des circuits supraconducteurs, ou encore dans des diamants colorés. En adaptant ces expériences aux contraintes de la théorie de l'information et donc aux ordinateurs, chacune de ces méthodes permet d'entrevoir la fabrication d'un calculateur voire d'un ordinateur quantique. Plusieurs technologies font appel à des molécules ou des atomes individuels ou encore à la polarisation d’une lumière laser comme support d’information. Une nouvelle fois le principal problème est la décohérence. 1. 2. 3. 4. 5. 6. 7. 1. Comment fonctionne un système à RMN ? 2. 3. 4. 5. En 2010, Gregory D. 6.
La molécule de chlorophylle serait un ordinateur quantique
La molécule de chlorophylle serait un ordinateur quantique - 1 Photo Les membres du Fleming research group à l'origine de la découverte sur le mécanisme de la photosynthèse (à partir de la gauche) : Greg Engel , Tessa Calhoun, Tae-Kyu Ahn, Elizabeth Read et Yuan-Chung Cheng (Crédits : photo by Roy Kaltschmidt, Berkeley Lab Creative Services Office). Il est presque inutile de rappeler le rôle essentiel de la photosynthèse pour les différentes formes de vie sur Terre. Bien que d'une banalité omniprésente, l'efficacité de cette réaction, utilisant l'énergie du Soleil pour produire de l'oxygène et convertir le dioxyde de carbone et l'eau en molécules carbonées complexes et riches en énergie, laissait perplexe plus d'un biochimiste. Sous l'action du rayonnement solaire, les molécules de chlorophylle voient leurs niveaux électroniques excités et passer à un niveau d'énergie supérieur à ceux des molécules alentour. A voir aussi sur Internet Sur le même sujet
Un calculateur quantique ou ordinateur[1] quantique, repose sur des propriétés quantiques de la matière : superposition et intrication d'états quantiques. by agnesdelmotte Jun 1