
Recommender Systeme – Winfwiki Aus Winfwiki 1 Einleitung Recommender Systeme sind spezielle Empfehlungssysteme, die insbesondere im Online-Handel genutzt werden. Sie erzeugen Produktvorschläge für interessierte Kunden, die auf die Vorlieben und Wünsche des Nutzers zugeschnitten zu sein scheinen. 1.1 Problemstellung / Ausblick Auf Basis der genannten Definition werden im Rahmen dieser Arbeit sowohl die reine Technologie als auch mögliche Einsatzgebiete von Recommender Systemen einer eingehenden Betrachtung unterzogen, um eine klare Einschätzung zu tatsächlichen und potenziellen Nutzwerten von Empfehlungssystemen abgeben zu können. 1.2 Einordnung Mit der exponentiell steigenden Nutzung des Internets seit Anfang der neunziger Jahre und der daraus resultierenden Menge an Informationsangeboten steigt das Bedürfnis sowohl auf Nutzer- als auch auf Anbieterseite, Informationen zielgerecht auf die jeweiligen Interessen- und Anwendungsgebiete maßzuschneidern. 1.3 Historie 2 Klassifizierung von Recommender Systemen (vgl.
Clique Clique is a modification of the Elgg social networking platform. Clique provides users with a social network platform that enables them to keep control over their privacy. This includes, for example, fine grained access control and configuration of multiple faces (e.g. family, personal, professional) that can be used for interactions with other users. When posting a data item, e.g., name, birthday or profile photo on the site, the user can define for every single other user whether they should be able to see it or not. collections – contacts are organised in collections, roughly corresponding with social circles. The Clique demonstrator can be accessed through The library comprises only the implementations of the credential system features, additional required components for building various kinds of practical systems are not included in the library. Who may be interested in the component? We plan to extend Clique with more features. Version: Size: 2,09 MB Author:
Guiding Principles for the Open Semantic Enterprise From MIKE2.0 Methodology Introduction An open semantic enterprise is an organization that uses the languages and standards of the semantic Web, including RDF, RDFS, OWL, SPARQL and others to integrate existing information assets, using the best practices of linked data and the open world assumption, and targeting knowledge management applications. It does so using some or all of the seven guiding principles noted herein.[1] These guiding principles do not necessarily mean open data nor open source. These practices do not require replacing current systems and assets; they can be applied equally to public or proprietary information; and they can be tested and deployed incrementally at low risk and cost. Like any change in practice or learning, embracing the open semantic enterprise is fundamentally a people process. Summary: The Seven Principles and Their Benefits The natural scope of the open semantic enterprise is in knowledge management and representation. The RDF Data Model
Engine/DataModel/Entities/ElggGroup We're rewriting our docs. This page has been ported to github. Join the effort! The ElggGroup entity type represents groups within an Elgg install. Introduction Beyond the standard ElggEntity properties, ElggGroups also support: name The group's plain text name description A description of the group A group in Elgg is an entity that users can join, leave and post content to. A group acts as a container for other entities, and has other methods provided by ElggGroup in order to manage content and membership. ElggGroup and default groups It's important to draw a distinction between the default groups supplied in the Elgg distribution - which have profile pages, forums and draw content to the front - and ElggGroup, the ElggEntity specialization class that provides group-level functionality. The default group as provided by Elgg is an example. Writing a group-aware plugin Plugin owners need not worry too much about writing group-aware functionality, but there are a few key points: Uploading content
Semantische Modellierung Als integraler Teil des Ontology Engineerings führen wir unternehmensinterne Projekte zum semantischen Terminologiemanagement durch. Als immaterielles Ergebnis erhält ein Unternehmen ein gemeinsames und besseres Verständnis zu seinen zentralen Begriffen. Vor allem die Kommunikation zwischen Kunde, Entwicklung, Vertrieb und Management verbessert sich erheblich. Als "anfassbares" Ergebnis liefern wir an den Kunden eine ausführliche Dokumentation seiner Terminologie in verschiedenen Formaten und Visualisierungen aus. Wir erstellen semiformale und formale Terminologien - sogenannte Ontologien - sowohl auf Schema wie auf Instanz-Ebene. Leichtgewichtige Ontologien modellieren wir bevorzugt in SKOS. Heavy weight (stark axiomatisierte oder regelbasierte) Ontologien modellieren wir je nach Anforderung in RDFS, OWL oder F-Logic respektive Object Logic. Unsere Spezialität ist das "Tuning" von OWL-Ontologien, um sie für large scale inferencing mit regelbasierten Rule-Engines fit zu machen.
Virtuoso Open-Source Wiki : Virtuoso Sponger Sponger ontology mappers peform the the task of generating RDF instance data from extracted metadata (non-RDF) using ontologies associated with a given data source type. They are typically XSLT (using GRDDL or an in-built Virtuoso mapping scheme) or Virtuoso PL based. Virtuoso comes preconfigured with a large range of ontology mappers contained in one or more Sponger cartridges. Figure 9: Sponger architecture Below is an extract from the stylesheet /DAV/VAD/rdf_cartridges/xslt/flickr2rdf.xsl, used for extracting metadata from Flickr images. <xsl:template match="owner"> <rdf:Description rdf:nodeID="person"> <rdf:type rdf:resource=" /> <xsl:if test="@realname ! Cartridge Registry The SYS_RDF_MAPPERS table definition is as follows: Cartridge Invocation The Virtuoso SPARQL processor supports IRI dereferencing via the Sponger. Sponger cartridges are invoked during the aforementioned pipeline as follows: Figure 10: Sponger cartridge invocation flowchart
Word Sense Tutorial What is Word Sense Disambiguation? Word sense disambiguation (WSD) is the task of determing which meaning of a polysemous word is intended in a given context. Some words, such as English "run", are highly ambiguous. The American Heritage Dictionary, 4th Edition lists 28 intransitive verb senses, 31 transitive verb senses, 30 nominal senses and 46 adjectival senses. The word "gallop" has a mere 4 nominal senses, and the word "subroutine" only 1 nominal sense. Where Do Senses Come From? It would be convenient if we could trust dictionaries as the arbiter of word senses. Words do not have well-defined boundaries between their senses. In practice, dictionaries can be useful. Supervised vs. We will assume for the rest of this tutorial that the words we care about will have finitely many disjoint senses. If there is no training data, word sense disambiguation is a clustering problem. For this demo, we will be doing supervised word sense disambiguation. Senseval & SemEval Senseval 3 Senseval 3 Data
1.8: Autosubscribegroup This plugin allows new users to get joined to groups automatically when they register. Last updated 153 days ago This is an updated version of spicyjr Autosubscribegroup plugin ( It allows you to define a list of groups (a single group or as many groups as you want) you want new members to be joined to automaticallly when they register an account at your site. There are versions of the plugin available for Elgg 1.8 and 1.9. Which version of the plugin to use on which version of Elgg? If not stated otherwise the first two numbers of the plugin version will indicate the compatible Elgg version, i.e. plugin version 1.8.X is for Elgg 1.8 whileplugin version 1.9.X is for Elgg 1.9 respectively (and so on for future versions of Elgg). Installation and configuration: How to define the list of groups for autosubscribe: GUID_1, GUID_2, etc. Release Notes: Changelog:
University of Rochester Computer Science (URCS) WordNet Browser License | Prerequisites | Downloads | Installation | Configuration | UsageIssues This document outlines the care and feeding of the URCS WordNet Browser, an open-source, cross-platform tool for searching and browsing the WordNet database. License This program is copyright 2010 George Ferguson, ferguson@cs.rochester.edu. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with this program. Prerequisites WordNet The URCS WordNet Browser requires the WordNet 3.0 database files. Java Downloads Mac OSX
mapkyca/Elgg-Multisite