background preloader

Obesity Prevalence Maps 2014 - Centers for Disease Control and Prevention

Obesity Prevalence Maps 2014 - Centers for Disease Control and Prevention
Obesity prevalence in 2014 varies across states and territories. No state had a prevalence of obesity less than 20%. 5 states and the District of Columbia had a prevalence of obesity between 20% and <25%. 23 states, Guam and Puerto Rico had a prevalence of obesity between 25% and <30%. 19 states had a prevalence of obesity between 30% and <35%. 3 states (Arkansas, Mississippi and West Virginia) had a prevalence of obesity of 35% or greater. The Midwest had the highest prevalence of obesity (30.7%), followed by the South (30.6%), the Northeast (27.3%), and the West (25.7%). Prevalence¶ of Self-Reported Obesity Among U.S. ¶Prevalence estimates reflect BRFSS methodological changes started in 2011. Source: Behavorial Risk Factor Surveillance System, CDC. *Sample size <50 or the relative standard error (dividing the standard error by the prevalence) ≥ 30%. >View Data Table - Prevalence of Self-Reported Obesity Among U.S. Prevalence of Self –Reported Obesity Among U.S. Top of Page Related:  SamfundsfagData ResourcesObésité

Indvandreres og efterkommeres placering på det danske arbejdsmarked - SFI. Clinical Quality Measures CMS uses clinical quality measures (CQMs) in a variety of quality initiatives that include quality improvement and public reporting. ONC certifies that electronic health record (EHR) technologies are capable of accurately calculating the CQM results for the meaningful use incentive program. Quality Measure Code Sets The Clinical Quality Measures used by the HHS EHR incentive program are comprised of definitions, measure logic, data elements, and value sets. Four federal agencies: the Agency for Healthcare Research and Quality (AHRQ), CMS, the National Library of Medicine (NLM), and ONC are providing these components in various formats in order to be understood by technical, non-technical, and clinical consumers. Data Elements Catalog (DEC) – A data element is a representation of a clinical concept that represents a patient state or attribute. Value Sets – Value sets define clinical concepts unambiguously. Certification Eligible Hospital and Provider Clinical Quality Measures Value Sets

Tema om fedme fra WHO Europe Obesity Obesity is one of the greatest public health challenges of the 21st century. Its prevalence has tripled in many countries of the WHO European Region since the 1980s, and the numbers of those affected continue to rise at an alarming rate. In addition to causing various physical disabilities and psychological problems, excess weight drastically increases a person’s risk of developing a number of noncommunicable diseases (NCDs), including cardiovascular disease, cancer and diabetes. WHO/Europe approaches to obesity Top story WHO European Region has lowest global breastfeeding rate Breastfeeding is the best option for infant feeding and also has long-term health benefits for mothers. Multimedia Video – WHO-FAO: Second International Conference on Nutrition Data and statistics The percentage of children who are overweight before puberty that will be overweight in early adulthood. More data and statistics

Obésité : a-t-on enfin trouvé une solution MAIGRIR. Sciences et Avenir vous l'annonçait récemment : le groupe Nestlé travaille activement à la mise au point d'un complément alimentaire qui régule le taux de sucre et de gras dans le corps. Mais le groupe suisse n'est pas le seul à s'intéresser à la perte de poids sans le moindre effort, puisque des chercheurs du Harvard Stem Cell Institute aux États-Unis sont sur la piste d'un médicament qui pourrait permettre de faire baisser le surplus de graisse de 30 %. Leurs premiers résultats viennent d'être publiés dans la revue Nature Cell Biology. Un espoir pour les personnes obèses ? Sciences et Avenir : Que sont parvenus à réaliser les chercheurs du Harvard Stem Cell Institute ? Pr Arnaud Basdevant : Ils ont découvert deux composés dans le corps humain qui ciblent la même molécule, ce qui a pour effet de convertir des cellules produisant de la graisse blanche (qui a pour rôle de stocker les lipides) en cellules de graisse brune (qui brûle les calories).

Anbragt i Historien AHRQ Innovations Exchange Overvægt Opdateret 30. oktober 2015 Overvægt påvirker en række af kroppens fysiske funktioner. BMI-anbefalinger Det anbefales, at man gennem hele livet bevarer sin normalvægt. For voksne betyder det, at man har et BMI mellem 18,5 og 25,0. Små skridt og veje til vægttab Selvhjælpsguiden 10 veje til vægttab fra Sundhedsstyrelsen rummer en række eksempler på små ændringer, der kan hjælpe til en lavere vægt og et sundere liv. 10 veje til vægttab er let at gå til og for dem, der gerne vil hurtigt i gang og ikke er interesseret i dybere viden om metoden. Begge udgivelser kan bestilles hos Komiteen for Sundhedsoplysning på sundhedsoplysning.dk. Forekomsten af overvægt Svær overvægt er et stigende problem for folkesundheden. Forekomsten af overvægt i Danmark er steget markant inden for de seneste årtier. 47 % af den voksne befolkning er overvægtige (BMI≥25). Tallene er fra den nationale sundhedsprofil 2010 og er baseret på selvrapporteret højde og vægt blandt svarpersonerne. Materialer til borgere

Quand la flore intestinale influe sur la génétique de l'obésité BACTÉRIES. On savait que des humains et des rongeurs souffrant de diabète et d’obésité hébergent dans leur intestin des populations bactériennes dont la composition est différente de celles retrouvées chez des personnes non atteintes par ces troubles de même que chez des animaux sains. Des scientifiques ont d’ailleurs montré que le transfert du microbiote intestinal de sujets ou d’animaux obèses à des rongeurs élevés en conditions stériles (dépourvus de flore bactérienne intestinale) sont davantage susceptibles de développer une obésité ou un diabète. Les facteurs génétiques bactériens et humains interagissent Les chercheurs sont parvenus à cette conclusion en utilisant trois souches de souris : génétiquement prédisposées à développer une obésité et un diabète (sous l’effet d’une alimentation riche en graisses), résistantes à l’obésité et au diabète, susceptibles de devenir obèses mais résistantes au diabète. Reprogrammer le microbiote intestinal REPROGRAMMATION.

Folketinget - Dokumenter Accepter cookiesAccepter ikke cookiesLæs mere om cookies www.ft.dk bruger cookies for at sitet virker og samler statistik ind til forbedring af din brugeroplevelse. [Skip menu] Dokumenter Søg i dokumenter Søg i titel og resuméSøg i hele dokumentteksten Dokumenttyper Du får vist indeværende samling for forslag og seneste måned for bilag og spørgsmål. Har du brug for hjælp ? Folketingets Oplysning Tlf. Kvikopslag Kvikopslag alm. del Folketinget, Christiansborg 1240 København K Telefon: +45 3337 5500 E-mail: folketinget ft.dk Til top Top KDnuggets tweets, Jan 14-16: Machine Learning humor: “Love Thy Nearest Neighbor”; What is a zetta-byte, visualized Machine Learning humor on a T-shirt: "Love Thy Nearest Neighbor"; BigData - what is a zetta-byte, visualized; How to find useful external data (key question for most data mining tasks); Graduate Programs in #BigData Analytics, Data Science - updated From: Most popular KDnuggets tweets (see twitter.com/kdnuggets ) for Jan 14-16 were Most viewed: Graduate Programs in #BigData Analytics, Data Science - updated bit.ly/Vls4gr Most Retweeted: Machine Learning humor on a T-shirt: "Love Thy Nearest Neighbor". Most Favorited: How to find useful external data (key question for most data mining tasks) bit.ly/XyqAh6 Top 10 Tweets Machine Learning humor on a T-shirt: "Love Thy Nearest Neighbor".

Fedmeforskning - Publikationer - Publikationer Fedmeforskning > Publikationer > Publikationer 2016UdgivetE-pub ahead of printAre children like werewolves? : Full moon and its associations with sleep and activity behaviors in an international sample of children. / Chaput, Jean-Philippe; Weippert, Madyson; Leblanc, Allana G; Hjorth, Mads Fiil; Michaelsen, Kim F.; Katzmarzyk, P T; Tremblay, Mark S; Barreira, Tiago V; Broyles, Stephanie T; Fogelholm, Mikael; Hu, Gang; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V; Maher, Carol; Maia, Jose; Matsudo, Victor; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; Sjödin, Anders Mikael; Zhao, Pei.

Related: