background preloader

Protege Ontology Library

Protege Ontology Library
OWL ontologies Information on how to open OWL files from the Protege-OWL editor is available on the main Protege Web site. See the Creating and Loading Projects section of the Getting Started with Protege-OWL Web page. Other ways to search for OWL ontologies include using Google: or the new Semantic Web search engine called Swoogle. AIM@SHAPE Ontologies: Ontologies pertaining to digital shapes. Frame-based ontologies In the context of this page, the phrase "frame-based ontologies" loosely refers to ontologies that were developed using the Protege-Frames editor. Biological Processes: A knowledge model of biological processes and functions that is graphical, for human comprehension, and machine-interpretable, to allow reasoning. Other ontology formats Dublin Core: Representation of Dublin Core metadata in Protege. Related:  Enterprise Architecture Collectionontologie

Osate 2 - AadlWiki From AadlWiki Introduction Osate 2 is an open-source tool platform to support AADL v2. In January 2012 correction to a number of errata to AADL v2 have been approved. This tool intends both end users and tool developers. Download OSATE2 comes in two versions: the stable and testing. Graphical Editor A graphical editor is available in OSATE. Documentation Editing a first AADL model: Small tutorial to show how to create a first AADL model with Osate 2. The core The core consists in supporting the language in Eclipse. Official Plug-ins The official plug-ins are part of the OSATE2 releases and included in update site. External Plug-ins Adele Graphical Editor: as OSATE2 plug-in from ElliDiss. Using OSATE2 There are different ways to use OSATE: Eclipse plugin: you can use OSATE2 either by using the Eclipse graphical framework As a standalone Java application (also called command-line): the following page Also, you might be interested by our list of OSATE 2 tips & tricks.

LODE - Live OWL Documentation Environment Live OWL Documentation Environment (LODE), version 1.2 dated 3 June 2013, is a service that automatically extracts classes, object properties, data properties, named individuals, annotation properties, general axioms and namespace declarations from an OWL and OWL2 ontology, and renders them as ordered lists, together with their textual definitions, in a human-readable HTML page designed for browsing and navigation by means of embedded links. This LODE service is an open source development, and can be freely used, as described in this document. It may be used in conjunction with content negotiation to display this human-readable version of an OWL ontology when the user accesses the ontology using a web browser, or alternatively to deliver the OWL ontology itself when the user accesses the ontology using an ontology editing tool such as Protégé and NeOn Toolkit. The following pseudo-URL describes the way to call the LODE service: where: is the URL to call the service.

SemanticWebTools - W3C Wiki REDIRECT New SemanticWiki Tools Page As of 12:50, 14 January 2010, this page is no longer maintained and should not be changed. The content has been transferred to (Changes made here after the above date may not be reflected on the new page!) Please consult and possibly modify that page. Table of Contents: This page contains the information on RDF and OWL tools that used to be listed on the home pages of the RDF and OWL Working Groups at W3C. This Wiki page is only for programming and development tools. There are other pages on tool collection, largely overlapping with this, but possibly with a different granularity or emphasis. There are also separate pages maintained on this Wiki for: SPARQL implementations, set up by the SPARQL Working Group (although most of the information is present on this page, too) SPARQL "endpoints", examples of using SPARQL in exposing various data. Adobe's XMP Altova's SemanticWorks Amilcare Arity's LexiLink Asio Cerebra Server Rej

Tool Integrators |Toolsets | OSATE The SAE AADL accommodates OSATE, which provides a low entry-cost solution based on Eclipse and the Eclipse Modeling Framework (EMF). The SEI has developed OSATE as a set of plug-ins on top of the open-source Eclipse platform to provide a toolset for front-end processing of AADL models. The OSATE front-end has been augmented with a set of plug-ins (see Figure 1), including an AADL to MetaH converter, several analysis plug-ins for performing various architecture consistency checks and distributed resource allocation and scheduling analysis. Figure 1: OSATE Plug-In Development for AADL For information on getting started with OSATE plug-in development, check out the OSATE resources page.

Penser, modéliser (pour le web de données) (1/2) - Sparna J’ai récemment eu le plaisir de collaborer avec la société Anaphore à la mise au point d’un modèle d’ontologie pour décrire des fonds d’archives. S’il ne m’appartient pas de dévoiler le contenu de ce modèle qui sera je l’espère rendu public dans quelques semaines, je voulais donner quelques retours d’expérience sur le processus de modélisation lui-même, ainsi que sur quelques motifs de conception que nous avons mis en oeuvre (dans un second article). Pour quoi modélise-t-on ? La question n’est pas aussi simple qu’il n’y parait, et il y a tout à gagner à mettre à plat dès le début du travail de modélisation la distinction entre : un modèle/format de travail;un modèle/format d’échange;et un modèle conceptuel; Est-ce que l’on cherche à définir un modèle de travail qui sera utilisé à l’intérieur d’un système logiciel (le schéma des tables de sa base de données, pour faire simple) ? « Les formats d’échange permettent de rendre lisibles par différentes applications les mêmes données. « Be real »

Cytoscape: An Open Source Platform for Complex Network Analysis and Visualization CEB IT Roadmap Builder Register for our webinar on May 7 to learn more about Six IT Roadmaps for Better Business Outcomes. Register for the Webinar Learn more about the six common IT roadmaps, as well as how to create, maintain, and communicate better IT roadmaps. Download the Whitepaper Watch organizations improve how they create, visualize and communicate their IT plans. Watch the Video See what your IT organization's roadmap looks like with CEB IT Roadmap Builder. Take the Diagnostic Watch how various parts of an IT organization use CEB IT Roadmap Builder. Watch the Video Featured in MIT Technology Review. Read the Article

Réseau bayésien Un article de Wikipédia, l'encyclopédie libre. Un réseau bayésien est en informatique et en statistique un modèle graphique probabiliste représentant des variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, ils sont à la fois : Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe. Dans ce graphe, les relations de cause à effet entre les variables ne sont pas déterministes, mais probabilisées. L'intérêt particulier des réseaux bayésiens est de tenir compte simultanément de connaissances a priori d'experts (dans le graphe) et de l'expérience contenue dans les données. Intuition[modifier | modifier le code] Un exemple très simple dans la modélisation des risques[modifier | modifier le code] Un opérateur travaillant sur une machine risque de se blesser s’il l’utilise mal. Bien sûr, ces facteurs ne permettent pas de créer un modèle déterministe. Fig. 1 : structure de causalité. si et seulement si et avec

CellDesigner HSSP - home SPEAR Algorithm The SPEAR algorithm is a tool for ranking users in social networks by their expertise and influence within the community. In 2009, my co-worker Ching-man Au Yeung from University of Southampton and I presented the SPEAR ranking algorithm in our joint paper Telling Experts from Spammers: Expertise Ranking in Folksonomies at the ACM SIGIR 2009 Conference in Boston, USA. The graph-based SPEAR ranking algorithm (Spamming-resistant Expertise Analysis and Ranking) is a new technique to measure the expertise of users by analyzing their activities. The focus is on the ability of users to find new, high quality information in the Internet. The original use case – and the one described in our SIGIR paper – has been to find expert users and high quality websites for a given topic on the social bookmarking service, back in 2009 still a Yahoo! The two main elements of the SPEAR algorithm are: Figure 1: The SPEAR algorithm gives more credit to early discoverers of new information. C.

BiologicalNetworks Applied Enterprise Architecture | Hands-On Architecture An earlier post (How to Build a Roadmap) in this series summarized the specific steps required to develop a well thought out road map. This roadmap identified specific actions using an overall pattern ALL roadmaps should follow. The steps required to complete this work: This post explores the step where we discover the optimum sequence of actions recognizing predecessor – successor relationships. This is undertaken now that we have the initiatives and the prioritization is done. The goal is to collect and group the set of activities (projects) into a cohesive view of the work ordered in a typical leaf, branch, and trunk pattern so we can begin to assemble the road map with a good understanding what needs to be accomplished in what order. ordered set of actions subject to the set of priorities and constraints already agreed upon. I’m not going to focus on the relatively straight forward task in the technology (infrastructure) domains many of us are familiar with. I thought so. Like this: