background preloader

Garnier-malet la théorie du dédoublement

Garnier-malet la théorie du dédoublement
Related:  Quantique

CultureSciences-Physique - Fenêtre ouverte sur la mécanique quantique Présentation La physique quantique est née du constat de l'existence d'un certain nombre de phénomènes qui ne pouvaient pas être expliqués par la théorie classique qui existait alors. On a montré que la réalité physique contredit la théorie classique, et que la théorie quantique que nous venons d'entrevoir, au contraire, permet d'expliquer et de prédire ces mêmes phénomènes physiques. Les intégrales de chemin de Feynman Dans cette présentation, la probabilité p pour une particule d'aller de la position x1, à l'instant t1, à la position x2, à l'instant t2, peut s'exprimer comme le carré d'une intégrale sur tous les trajets possibles permettant d'aller de (x1, t1) à (x2, t2) où h ≃ 6,63 × 10-34 J.s est la constante de Planck dont on a déjà parlé précédemment, et S est appelée "l'action" et est une fonction du trajet*. L'action est l'intégrale sur tout le trajet du Lagrangien. On constate que, puisque h est très petit (de l'ordre de 10-34 J.s!) Quel est l'ordre de grandeur de S ? Conclusion

Mécanique quantique : des applications tous azimuts  La mécanique quantique est l’une des théories physiques qui donne le plus de fil à retordre à l’entendement. Pourtant, elle débouche déjà sur des applications. Voyage dans le monde quantique avec les dernières expériences surprenantes menées par l'équipe de Jean-François Roch, en collaboration avec celles d’Alain Aspect et Philippe Grangier, à l’Institut d’optique. Dispositif optique utilisé au laboratoire de photonique quantique et moléculaire (CNRS), dans le cadre d'expériences sur la dualité onde/corpuscule.© Carlos Munoz Yague/Invisuphoto À la fin du XIXe siècle, le savant anglais William Thomson pouvait dire dans un de ses discours : "La science physique forme aujourd’hui, pour l’essentiel, un ensemble parfaitement harmonieux, un ensemble pratiquement achevé !" Pour autant, la mécanique quantique n’a pas été tendre avec notre entendement. De même, une particule quantique peut être dans deux états à la fois. 01.Mécanique quantique : le sens commun mis à mal

Gravitation et mécanique quantique Pour unifier la gravitation aux autre interactions fondamentales il est nécessaire de parvenir à décrire la gravitation dans le formalisme de la physique quantique. La seule description théorique de la gravitation dont nous disposons aujourd’hui est celle fournie par la relativité générale. Or la relativité générale et la mécanique quantique ne font pas bon ménage. Sur de nombreux points fondamentaux, le monde de la relativité générale et celui de la physique quantique ont une vision totalement divergente Pour unifier la gravitation aux autre interactions fondamentales il est nécessaire de parvenir à décrire la gravitation dans le formalisme de la physique quantique. La seule description théorique de la gravitation dont nous disposons aujourd’hui est celle fournie par la relativité générale. Cela tient peut être du fait que la relativité générale tente d’expliquer l’infiniment grand alors que la physique quantique s’intéresse à l’infiniment petit.

Physique quantique Hiérarchie des systèmes physiques dans l'infiniment petit et domaines scientifiques associés (les nombres indiquent les changements d'échelle entre chaque niveau). La physique quantique est un ensemble de théories physiques nées au XXe siècle, qui décrivent le comportement des atomes et des particules et permettent d'élucider certaines propriétés du rayonnement électromagnétique. Comme la théorie de la relativité, les théories dites « quantiques » marquent une rupture avec ce qu'on appelle maintenant la physique classique, qui regroupe les théories et principes physiques connus au XIXe siècle — notamment la mécanique newtonienne et la théorie électromagnétique de Maxwell —, et qui ne permettait pas d'expliquer certaines propriétés physiques. La physique quantique recouvre l'ensemble des domaines de la physique où l'utilisation des lois de la mécanique quantique est une nécessité pour comprendre les phénomènes en jeu. Histoire[modifier | modifier le code] et autant de donner où L’énergie

Mécanique quantique Un article de Wikipédia, l'encyclopédie libre. La mécanique quantique est la branche de la physique qui a pour objet d'étudier et de décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée au début du XXe siècle par une dizaine de physiciens américains et européens, afin de résoudre différents problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales. Au cours de ce développement, la mécanique quantique se révéla être très féconde en résultats et en applications diverses. Panorama général[modifier | modifier le code] Lois de probabilités[modifier | modifier le code] Dans la conception classique des lois de probabilités, lorsqu'un événement peut se produire de deux façons différentes incompatibles l'une avec l'autre, les probabilités s'additionnent. Existence des quanta[modifier | modifier le code]

De la mécanique quantique à échelle humaine | Planet Techno Science La languette placée en état de superposition quantique. (O'Connell et al., Nature, Advance Online Publication) D e la physique quantique, oui, mais visible à l’œil nu! D’après la théorie quantique de la matière, les objets microscopiques se comportent à la fois comme des ondes et des particules. Ce constat est connu par les physiciens depuis des décennies, mais jusqu’ici, il n’avait pu être observé qu’à des échelles atomiques. Pour placer un objet de 30 micromètres dans un état quantique, Andrew Cleland et son équipe ont utilisé un circuit électrique supraconducteur qui obéit aux lois de la mécanique quantique. En raison de sa soumission aux lois quantiques, les chercheurs ont pu placer leur circuit électrique dans un état de superposition quantique, c’est-à-dire lui ordonner de bouger tout en restant immobile. A voir également:

La théorie de "la gravité quantique à boucle" de Lee Smolin : Autres théories GAIA a écrit:Je trouve intéressante l'idée de Lee Smolin que le temps existait avant le Big BangMais si le temps existait avant, l'espace aussi existait alors...donc le big bang n'est pas le commencement de l'espace temps ! Je pense que l'espace n'existait pas forcément, l'espace a commencé a existé à partir de l'ouverture de la clef de cid, le temps dans une nouvelle dimension (BB) a commencé à s'écouler créant l'espace-temps. Le temps précédait forcément l'espace. La dimension ou notre univers, à titre d'exemple, était sans histoire cosmologique. Le Big Bang créé une nouvelle dimension mais n'est pas forcément le début du Temps, mais un temps parmi les temps, puisque le BB aurait pu se reproduire. Justement bonne question, est ce que le trou noir jouerait un rôle de régulation de notre univers et est il à l'origine d'autres big-bangs créant d'autres univers ? Qu'est ce que le temps par essence ? Nous sommes à la fois observateur - observé (vie extra-terrestre) et intra.

Gravité quantique Un article de Wikipédia, l'encyclopédie libre. La gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Problématique[modifier | modifier le code] La plupart des difficultés rencontrées lors de cette unification proviennent des suppositions radicalement différentes de ces théories sur le fonctionnement de l'univers. Une difficulté supplémentaire vient du succès de la mécanique quantique et de la théorie de la relativité générale. La mécanique quantique est basée sur les particules de médiation des différentes forces utilisées dans l'espace-temps plat de la mécanique newtonienne ou de la relativité restreinte tandis que la théorie de la relativité générale modélise la gravité comme une courbure de l'espace-temps dont le rayon se modifie lorsque la matière se déplace. Effet de la gravité en mécanique quantique[modifier | modifier le code] Approches candidates[modifier | modifier le code] Portail de la physique

Leonard Susskind Un article de Wikipédia, l'encyclopédie libre. Pour les articles homonymes, voir Susskind. Leonard Susskind Leonard Susskind en 2009 Leonard Susskind (né le [1]) est un physicien américain. Susskind est considéré comme l'un des pères de la théorie des cordes avec Yoichiro Nambu et Holger Bech Nielsen pour leurs contributions au modèle de physique des particules de la théorie des cordes[2]. En 1998, il obtient le Prix Sakurai. Jeunesse et éducation[modifier | modifier le code] Susskind est né dans une famille juive très modeste dans le Bronx[3] et réside aujourd'hui à Palo Alto, en Californie. « Quand j'ai raconté à mon père que je voulais être physicien, il m'a dit : « Ah ça non, tu vas pas aller travailler dans une pharmacie ». N. Il étudia ensuite à l'université Cornell sous la direction de Peter A. Carrière[modifier | modifier le code] Contributions[modifier | modifier le code] Susskind a apporté sa contribution dans les domaines suivants de la physique : Livres[modifier | modifier le code]

Related: