background preloader

Neuron viewed with an electron microscope

Related:  Neurosciencebksubbarao

Brain Atlas - Introduction The central nervous system (CNS) consists of the brain and the spinal cord, immersed in the cerebrospinal fluid (CSF). Weighing about 3 pounds (1.4 kilograms), the brain consists of three main structures: the cerebrum, the cerebellum and the brainstem. Cerebrum - divided into two hemispheres (left and right), each consists of four lobes (frontal, parietal, occipital and temporal). The outer layer of the brain is known as the cerebral cortex or the ‘grey matter’.

Decision-Making and Control in the Brain Damage to the brain's frontal lobe is known to impair one's ability to think and make choices. And now scientists say they've pinpointed the different parts of this brain region that preside over reasoning, self-control and decision-making. Researchers say the data could help doctors determine what specific cognitive obstacles their patients might face after a brain injury. Diffusion MRI Diffusion MRI (or dMRI) is a magnetic resonance imaging (MRI) method which came into existence in the mid-1980s.[1][2][3] It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not free, but reflects interactions with many obstacles, such as macromolecules, fibers, membranes, etc. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state. The first diffusion MRI images of the normal and diseased brain were made public in 1985.[4][5] Since then, diffusion MRI, also referred to as diffusion tensor imaging or DTI (see section below) has been extraordinarily successful. Its main clinical application has been in the study and treatment of neurological disorders, especially for the management of patients with acute stroke.

Digital Games for Brains By: Alvaro Fernandez The Robert Wood John­son Foun­da­tion (RWJF) just announced more than $1.85 mil­lion in grants for research teams to study how dig­i­tal games can improve play­ers’ health behav­iors and out­comes (both brain-based and behavioral). The press release: Nine Lead­ing Research Teams Selected to Study How Dig­i­tal Games Improve Play­ers’ Health “Dig­i­tal games are inter­ac­tive and expe­ri­en­tial, and so they can engage peo­ple in pow­er­ful ways to enhance learn­ing and health behav­ior change, espe­cially when they are designed on the basis of well-researched strate­gies,” said (UC Santa Barbara’s Dr.

The Brain: A Body Fit for a Freaky-Big Brain Aiello and Wheeler noted that this dramatic increase in brain size would seem to have required a dramatic increase in metabolism—the same way that adding an air-conditioning system to a house would increase the electricity bill. Yet humans burn the same number of calories, scaled to size, as other primates. Somehow, Aiello and Wheeler argued, our ancestors found a way to balance their energy budget. As they expanded their brains, perhaps they slimmed down other organs. The scientists compared the sizes of organs in humans and other primates. Relatively speaking, our liver is about the same size as a baboon’s.

UCSB scientists discover how the brain encodes memories at a cellular level (Santa Barbara, Calif.) –– Scientists at UC Santa Barbara have made a major discovery in how the brain encodes memories. The finding, published in the December 24 issue of the journal Neuron, could eventually lead to the development of new drugs to aid memory. The team of scientists is the first to uncover a central process in encoding memories that occurs at the level of the synapse, where neurons connect with each other. "When we learn new things, when we store memories, there are a number of things that have to happen," said senior author Kenneth S. Kosik, co-director and Harriman Chair in Neuroscience Research, at UCSB's Neuroscience Research Institute.

Functional magnetic resonance imaging Researcher checking fMRI images Functional magnetic resonance imaging or functional MRI (fMRI) is a functional neuroimaging procedure using MRI technology that measures brain activity by detecting associated changes in blood flow.[1] This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases. The primary form of fMRI uses the Blood-oxygen-level dependent (BOLD) contrast,[2] discovered by Seiji Ogawa. The procedure is similar to MRI but uses the change in magnetization between oxygen-rich and oxygen-poor blood as its basic measure.

How mapping neurons could reveal how experiences affect mental wiring This article was taken from the July 2012 issue of Wired magazine. Be the first to read Wired's articles in print before they're posted online, and get your hands on loads of additional content by subscribing online. No road, no trail can penetrate this forest. Researchers show that memories reside in specific brain cells Our fond or fearful memories — that first kiss or a bump in the night — leave memory traces that we may conjure up in the remembrance of things past, complete with time, place and all the sensations of the experience. Neuroscientists call these traces memory engrams. But are engrams conceptual, or are they a physical network of neurons in the brain? In a new MIT study, researchers used optogenetics to show that memories really do reside in very specific brain cells, and that simply activating a tiny fraction of brain cells can recall an entire memory — explaining, for example, how Marcel Proust could recapitulate his childhood from the aroma of a once-beloved madeleine cookie. In that famous surgery, Penfield treated epilepsy patients by scooping out parts of the brain where seizures originated. Fast forward to the introduction, seven years ago, of optogenetics, which can stimulate neurons that are genetically modified to express light-activated proteins.

Neuron All neurons are electrically excitable, maintaining voltage gradients across their membranes by means of metabolically driven ion pumps, which combine with ion channels embedded in the membrane to generate intracellular-versus-extracellular concentration differences of ions such as sodium, potassium, chloride, and calcium. Changes in the cross-membrane voltage can alter the function of voltage-dependent ion channels. If the voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives.

SharpBrains Here you can enjoy the Top 25 Brain Teasers, Games & Illusions that SharpBrains readers (primarily adults, but some younger minds too) have enjoyed the most. It is always good to learn more about our brains and to exercise them!. Fun experiments on how our brains and minds work 1. You think you know the colors? Try the Stroop Test

The Brain's Highways: Mapping the Last Frontier Frontiers are in short supply. No explorer will again catch that first glimpse of the Pacific Ocean with “wild surmise,” take the first steps on the moon, or arrive first at the Challenger deep – the remotest corners of the earth are now tourist attractions. Even in science, great mysteries have fallen – life itself has gone from being the subject of metaphysical speculation about vital substances to the biophysical understanding of cellular processes. Uncharted territories, both physical and metaphorical, are hard to find. Yet there is one largely unmapped continent, perhaps the most intriguing of them all, because it is the instrument of discovery itself: the human brain. It is the presumptive seat of our thoughts, and feelings, and consciousness.

Imagining the Future Invokes Your Memory I REMEMBER my retirement like it was yesterday. As I recall, I am still working, though not as hard as I did when I was younger. My wife and I still live in the city, where we bicycle a fair amount and stay fit. We have a favorite coffee shop where we read the morning papers and say hello to the other regulars. We don’t play golf. Electroencephalography Simultaneous video and EEG recording of two guitarists improvising. Electroencephalography (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain.[1] In clinical contexts, EEG refers to the recording of the brain's spontaneous electrical activity over a short period of time, usually 20–40 minutes, as recorded from multiple electrodes placed on the scalp. Diagnostic applications generally focus on the spectral content of EEG, that is, the type of neural oscillations that can be observed in EEG signals. EEG is most often used to diagnose epilepsy, which causes obvious abnormalities in EEG readings.[2] It is also used to diagnose sleep disorders, coma, encephalopathies, and brain death. History[edit]

Image by Thomas Deerinck / Mark Ellisman by kaspervandenberg Dec 23