background preloader

Schrödinger equation

Schrödinger equation
In quantum mechanics, the Schrödinger equation is a partial differential equation that describes how the quantum state of some physical system changes with time. It was formulated in late 1925, and published in 1926, by the Austrian physicist Erwin Schrödinger.[1] In classical mechanics, the equation of motion is Newton's second law, and equivalent formulations are the Euler–Lagrange equations and Hamilton's equations. All of these formulations are used to solve for the motion of a mechanical system and mathematically predict what the system will do at any time beyond the initial settings and configuration of the system. In quantum mechanics, the analogue of Newton's law is Schrödinger's equation for a quantum system (usually atoms, molecules, and subatomic particles whether free, bound, or localized). It is not a simple algebraic equation, but (in general) a linear partial differential equation. The concept of a state vector is a fundamental postulate of quantum mechanics.

Antony Valentini Antony Valentini is a theoretical physicist and a professor at Clemson University. He is known for his work on the foundations of quantum physics.[1] Education and career[edit] Valentini obtained an undergraduate degree from Cambridge University, then earned his Ph.D. in 1992[2] with Dennis Sciama at the International School for Advanced Studies (ISAS) in Trieste, Italy.[1][3] In 1999, after seven years in Italy, he took up a post-doc grant to work at the Imperial College with Lee Smolin and Christopher Isham.[1] He currently works at the Perimeter Institute for Theoretical Physics. Work[edit] Valentini has been working on an extension of the causal interpretation of quantum theory. Quantum equilibrium, locality and uncertainty[edit] In 1991, Valentini provided indications for deriving the quantum equilibrium hypothesis which states that in the frame work of the pilot wave theory. may be accounted for by a H-theorem constructed in analogy to the Boltzmann H-theorem of statistical mechanics.

Bloch sphere Bloch sphere In quantum mechanics, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.[1] Quantum mechanics is mathematically formulated in Hilbert space or projective Hilbert space. The space of pure states of a quantum system is given by the one-dimensional subspaces of the corresponding Hilbert space (or the "points" of the projective Hilbert space). In a two-dimensional Hilbert space this is simply the complex projective line, which is a geometrical sphere. The Bloch sphere is a unit 2-sphere, with each pair of antipodal points corresponding to mutually orthogonal state vectors. and Definition[edit] Given an orthonormal basis, any pure state of a two-level quantum system can be written as a superposition of the basis vectors , where the coefficient or amount of each basis vector is a complex number. to be real and non-negative. , meaning . in the following representation: with . or .

Klein–Gordon equation The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic version of the Schrödinger equation. It is the equation of motion of a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. It cannot be straightforwardly interpreted as a Schrödinger equation for a quantum state, because it is second order in time and because it does not admit a positive definite conserved probability density. Still, with the appropriate interpretation, it does describe the quantum amplitude for finding a point particle in various places, the relativistic wavefunction, but the particle propagates both forwards and backwards in time. Statement[edit] The Klein–Gordon equation is This is often abbreviated as where and is the d'Alembert operator, defined by The equation is most often written in natural units: The form is determined by requiring that plane wave solutions of the equation: which is the homogeneous screened Poisson equation.

Pilot wave In theoretical physics, the pilot wave theory was the first known example of a hidden variable theory, presented by Louis de Broglie in 1927. Its more modern version, the Bohm interpretation, remains a controversial attempt to interpret quantum mechanics as a deterministic theory, avoiding troublesome notions such as instantaneous wavefunction collapse and the paradox of Schrödinger's cat. The pilot wave theory[edit] The pilot wave theory is one of several interpretations of quantum mechanics. It uses the same mathematics as other interpretations of quantum mechanics; consequently, it is also supported by the current experimental evidence to the same extent as the other interpretations. Principles[edit] The pilot wave theory is a hidden variable theory. the theory has realism (meaning that its concepts exist independently of the observer);the theory has determinism. The positions and momenta of the particles are considered to be the hidden variables. Consequences[edit] where is known. . and .

Quantum spacetime In mathematical physics, the concept of quantum spacetime is a generalization of the usual concept of spacetime in which some variables that ordinarily commute are assumed not to commute and form a different Lie algebra. The choice of that algebra still varies from theory to theory. As a result of this change some variables that are usually continuous may become discrete. Often only such discrete variables are called "quantized"; usage varies. The idea of quantum spacetime was proposed in the early days of quantum theory by Heisenberg and Ivanenko as a way to eliminate infinities from quantum field theory. The germ of the idea passed from Heisenberg to Rudolf Peierls, who noted that electrons in a magnetic field can be regarded as moving in a quantum space-time, and to Robert Oppenheimer, who carried it to Hartland Snyder, who published the first concrete example.[1] Snyder's Lie algebra was made simple by C. The Lie algebra should be semisimple (Yang, I. for the spatial variables . .

Airy function This article is about the Airy special function. For the Airy stress function employed in solid mechanics, see Stress functions. In the physical sciences, the Airy function Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–92). The function Ai(x) and the related function Bi(x), which is also called the Airy function, but sometimes referred to as the Bairy function, are solutions to the differential equation known as the Airy equation or the Stokes equation. The Airy function is the solution to Schrödinger's equation for a particle confined within a triangular potential well and for a particle in a one-dimensional constant force field. Definitions[edit] Plot of Ai(x) in red and Bi(x) in blue For real values of x, the Airy function of the first kind can be defined by the improper Riemann integral: which converges because the positive and negative parts of the rapid oscillations tend to cancel one another out (as can be checked by integration by parts).

Wave function collapse When the Copenhagen interpretation was first expressed, Niels Bohr postulated wave function collapse to cut the quantum world from the classical.[5] This tactical move allowed quantum theory to develop without distractions from interpretational worries. Mathematical description[edit] Mathematical background[edit] The quantum state of a physical system is described by a wave function (in turn – an element of a projective Hilbert space). The kets Where represents the Kronecker delta. An observable (i.e. measurable parameter of the system) is associated with each eigenbasis, with each quantum alternative having a specific value or eigenvalue, ei, of the observable. The coefficients c1, c2, c3... are the probability amplitudes corresponding to each basis . For simplicity in the following, all wave functions are assumed to be normalized; the total probability of measuring all possible states is unity: The process of collapse[edit] of that observable. , the wave function collapses from the full . .

Matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. In some contrast to the wave formulation, it produces spectra of energy operators by purely algebraic, ladder operator, methods.[1] Relying on these methods, Pauli derived the hydrogen atom spectrum in 1926,[2] before the development of wave mechanics. Development of matrix mechanics[edit] In 1925, Werner Heisenberg, Max Born, and Pascual Jordan formulated the matrix mechanics representation of quantum mechanics. Epiphany at Helgoland[edit] In 1925 Werner Heisenberg was working in Göttingen on the problem of calculating the spectral lines of hydrogen. "It was about three o' clock at night when the final result of the calculation lay before me. The Three Fundamental Papers[edit] After Heisenberg returned to Göttingen, he showed Wolfgang Pauli his calculations, commenting at one point:[4] In the paper, Heisenberg formulated quantum theory without sharp electron orbits. W.

Euler–Bernoulli beam theory This vibrating glass beam may be modeled as a cantilever beam with acceleration, variable linear density, variable section modulus, some kind of dissipation, springy end loading, and possibly a point mass at the free end. Additional analysis tools have been developed such as plate theory and finite element analysis, but the simplicity of beam theory makes it an important tool in the sciences, especially structural and mechanical engineering. History[edit] Schematic of cross-section of a bent beam showing the neutral axis. Prevailing consensus is that Galileo Galilei made the first attempts at developing a theory of beams, but recent studies argue that Leonardo da Vinci was the first to make the crucial observations. The Bernoulli beam is named after Jacob Bernoulli, who made the significant discoveries. Static beam equation[edit] Bending of an Euler–Bernoulli beam. The curve describes the deflection of the beam in the direction at some position , or other variables. Note that where , and and . . .

Quantum entanglement Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently – instead, a quantum state may be given for the system as a whole. Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky and Nathan Rosen,[1] describing what came to be known as the EPR paradox, and several papers by Erwin Schrödinger shortly thereafter.[2][3] Einstein and others considered such behavior to be impossible, as it violated the local realist view of causality (Einstein referred to it as "spooky action at a distance"),[4] and argued that the accepted formulation of quantum mechanics must therefore be incomplete. History[edit] However, they did not coin the word entanglement, nor did they generalize the special properties of the state they considered. Concept[edit] Meaning of entanglement[edit] Apparent paradox[edit] The hidden variables theory[edit]

Yang–Mills existence and mass gap In mathematical physics, the Yang–Mills existence and mass gap problem is an unsolved problem and one of the seven Millennium Prize Problems defined by the Clay Mathematics Institute which has offered a prize of US$1,000,000 to the one who solves it. The problem is phrased as follows: Yang–Mills Existence and Mass Gap. Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory exists on and has a mass gap Δ > 0. Existence includes establishing axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder & Schrader (1973) and Osterwalder & Schrader (1975). In this statement, Yang–Mills theory is the (non-Abelian) quantum field theory underlying the Standard Model of particle physics; is Euclidean 4-space; the mass gap Δ is the mass of the least massive particle predicted by the theory. Background[edit] See also[edit] References[edit] Arthur Jaffe and Edward Witten "Quantum Yang-Mills theory." External links[edit]

Dispersive partial differential equation Dispersive partial differential equation From Wikipedia, the free encyclopedia Jump to: navigation , search In mathematics , a dispersive partial differential equation or dispersive PDE is a partial differential equation that is dispersive . In this context, dispersion means that waves of different wavelength propagate at different phase velocities . Examples [ edit ] Linear equations [ edit ] Nonlinear equations [ edit ] See also [ edit ] External links [ edit ] The Dispersive PDE Wiki . Retrieved from " Categories : Navigation menu Personal tools Namespaces Variants Views Actions Navigation Interaction Toolbox Print/export Languages Edit links This page was last modified on 21 May 2012 at 20:15.

Interpretations of quantum mechanics An interpretation of quantum mechanics is a set of statements which attempt to explain how quantum mechanics informs our understanding of nature. Although quantum mechanics has held up to rigorous and thorough experimental testing, many of these experiments are open to different interpretations. There exist a number of contending schools of thought, differing over whether quantum mechanics can be understood to be deterministic, which elements of quantum mechanics can be considered "real", and other matters. This question is of special interest to philosophers of physics, as physicists continue to show a strong interest in the subject. They usually consider an interpretation of quantum mechanics as an interpretation of the mathematical formalism of quantum mechanics, specifying the physical meaning of the mathematical entities of the theory. History of interpretations[edit] Main quantum mechanics interpreters Nature of interpretation[edit] Two qualities vary among interpretations:

Related: