background preloader

Model theory

Model theory
This article is about the mathematical discipline. For the informal notion in other parts of mathematics and science, see Mathematical model. Model theory recognises and is intimately concerned with a duality: It examines semantical elements (meaning and truth) by means of syntactical elements (formulas and proofs) of a corresponding language. universal algebra + logic = model theory. Model theory developed rapidly during the 1990s, and a more modern definition is provided by Wilfrid Hodges (1997): although model theorists are also interested in the study of fields. In a similar way to proof theory, model theory is situated in an area of interdisciplinarity among mathematics, philosophy, and computer science. Branches of model theory[edit] This article focuses on finitary first order model theory of infinite structures. Informally, model theory can be divided into classical model theory, model theory applied to groups and fields, and geometric model theory. Universal algebra[edit] and or . . Related:  The problems with philosophy

Higher-order logic Formal system of logic The term "higher-order logic", abbreviated as HOL, is commonly used to mean higher-order simple predicate logic. Here "simple" indicates that the underlying type theory is the theory of simple types, also called the simple theory of types (see Type theory). Leon Chwistek and Frank P. Quantification scope[edit] First-order logic quantifies only variables that range over individuals; second-order logic, in addition, also quantifies over sets; third-order logic also quantifies over sets of sets, and so on. Higher-order logic is the union of first-, second-, third-, ..., nth-order logic; i.e., higher-order logic admits quantification over sets that are nested arbitrarily deeply. Semantics[edit] There are two possible semantics for higher-order logic. In the standard or full semantics, quantifiers over higher-type objects range over all possible objects of that type. In Henkin semantics, a separate domain is included in each interpretation for each higher-order type.

Signature (logic) In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. Signatures play the same role in mathematics as type signatures in computer programming. They are rarely made explicit in more philosophical treatments of logic. Formally, a (single-sorted) signature can be defined as a triple σ = (Sfunc, Srel, ar), where Sfunc and Srel are disjoint sets not containing any other basic logical symbols, called respectively function symbols (examples: +, ×, 0, 1) andrelation symbols or predicates (examples: ≤, ∈), and a function ar: Sfunc Srel → which assigns a non-negative integer called arity to every function or relation symbol. A signature with no function symbols is called a relational signature, and a signature with no relation symbols is called an algebraic signature. Symbol types S.

Computability theory Study of computable functions and Turing degrees Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. Introduction[edit] Turing computability[edit] The terminology for computable functions and sets is not completely standardized. Areas of research[edit]

Structure Arrangement of interrelated elements in an object/system, or the object/system itself Load-bearing[edit] Buildings, aircraft, skeletons, anthills, beaver dams, bridges and salt domes are all examples of load-bearing structures. The results of construction are divided into buildings and non-building structures, and make up the infrastructure of a human society. The structure elements are combined in structural systems. Load-bearing biological structures such as bones, teeth, shells, and tendons derive their strength from a multilevel hierarchy of structures employing biominerals and proteins, at the bottom of which are collagen fibrils.[4] Biological[edit] In another context, structure can also observed in macromolecules, particularly proteins and nucleic acids.[6] The function of these molecules is determined by their shape as well as their composition, and their structure has multiple levels. Chemical[edit] Chemical structure refers to both molecular geometry and electronic structure.

First-order logic A theory about some topic is usually first-order logic together with a specified domain of discourse over which the quantified variables range, finitely many functions which map from that domain into it, finitely many predicates defined on that domain, and a recursive set of axioms which are believed to hold for those things. Sometimes "theory" is understood in a more formal sense, which is just a set of sentences in first-order logic. The adjective "first-order" distinguishes first-order logic from higher-order logic in which there are predicates having predicates or functions as arguments, or in which one or both of predicate quantifiers or function quantifiers are permitted.[1] In first-order theories, predicates are often associated with sets. In interpreted higher-order theories, predicates may be interpreted as sets of sets. First-order logic is the standard for the formalization of mathematics into axioms and is studied in the foundations of mathematics. Introduction[edit] . x in .

Regular numerical predicate In computer science and mathematics, more precisely in automata theory, model theory and formal language, a regular numerical predicate is a kind of relation over integers. Regular numerical predicates can also be considered as a subset of for some arity . The class of regular numerical predicate is denoted [2] and REG.[3] Definitions[edit] The class of regular numerical predicate admits a lot of equivalent definitions. and a (numerical) predicate of arity Automata with variables[edit] The first definition encodes predicate as a formal language. Let the alphabet be the set of subset of . integers , it is represented by the word of length whose -th letter is . is represented by the word We then define as The numerical predicate is said to be regular if is a regular language over the alphabet . Automata reading unary numbers[edit] This second definition is similar to the previous one. Our alphabet is the set of vectors of binary digits. . Given a length and a number , the unary representation of is the word "0"'s.

Set theory The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s. After the discovery of paradoxes in naive set theory, numerous axiom systems were proposed in the early twentieth century, of which the Zermelo–Fraenkel axioms, with the axiom of choice, are the best-known. Set theory is commonly employed as a foundational system for mathematics, particularly in the form of Zermelo–Fraenkel set theory with the axiom of choice. Beyond its foundational role, set theory is a branch of mathematics in its own right, with an active research community. Contemporary research into set theory includes a diverse collection of topics, ranging from the structure of the real number line to the study of the consistency of large cardinals. History[edit] Mathematical topics typically emerge and evolve through interactions among many researchers. Cantor's work initially polarized the mathematicians of his day. Basic concepts and notation[edit] Some ontology[edit] Sets alone.

Cartesian product Cartesian product of the sets and The simplest case of a Cartesian product is the Cartesian square, which returns a set from two sets. A Cartesian product of n sets can be represented by an array of n dimensions, where each element is an n-tuple. The Cartesian product is named after René Descartes,[1] whose formulation of analytic geometry gave rise to the concept. Examples[edit] A deck of cards[edit] An illustrative example is the standard 52-card deck. Ranks × Suits returns a set of the form {(A, ♠), (A, ♥), (A, ♦), (A, ♣), (K, ♠), ..., (3, ♣), (2, ♠), (2, ♥), (2, ♦), (2, ♣)}. Suits × Ranks returns a set of the form {(♠, A), (♠, K), (♠, Q), (♠, J), (♠, 10), ..., (♣, 6), (♣, 5), (♣, 4), (♣, 3), (♣, 2)}. A two-dimensional coordinate system[edit] An example in analytic geometry is the Cartesian plane. Most common implementation (set theory)[edit] A formal definition of the Cartesian product from set-theoretical principles follows from a definition of ordered pair. . , where For example: Similarly

Absoluteness Mathematical logic concept Issues of absoluteness are particularly important in set theory and model theory, fields where multiple structures are considered simultaneously. In model theory, several basic results and definitions are motivated by absoluteness. In set theory, the issue of which properties of sets are absolute is well studied. The Shoenfield absoluteness theorem, due to Joseph Shoenfield (1961), establishes the absoluteness of a large class of formulas between a model of set theory and its constructible universe, with important methodological consequences. The absoluteness of large cardinal axioms is also studied, with positive and negative results known. In model theory[edit] In model theory, there are several general results and definitions related to absoluteness. In set theory[edit] A major part of modern set theory involves the study of different models of ZF and ZFC. Other properties are not absolute: Failure of absoluteness for countability[edit] and sentences.

Zeroth-order logic First-order logic without variables or quantifiers

Related: