background preloader

How do japanese multiply??

How do japanese multiply??
Related:  MathematicsMath

L'affaire Bettencourt et l'affaire Woerth — Bonjour Maître. — Ah, bonjour mon petit Raymond, entre, entre, prends une tasse de thé. Chers lecteurs, et très chères lectrices, je vous présente Raymond, mon nouveau stagiaire. Après une brillante carrière dans le milieu associatif, Raymond envisage un changement d’orientation professionnelle. — Non, tout va bien. — Il va falloir que tu les trouves, je crois savoir que tu n’aimes pas lire ceux des autres. — Ben je ne comprends pas, voilà. — Je comprends, c’est d’un abord un peu compliqué. — Pourquoi les choses ne se sont-elles pas arrêtées là ? — Parce que le parquet n’est pas une juridiction, son avis n’est qu’un avis et n’a pour conséquence qu’une seule chose : il ne saisit pas le tribunal. — C’est là que l’affaire Bettencourt devient l’affaire Woerth. — Absolument, Raymond. — C’est dur d’être trahi par ses subalternes, je sais ce que c’est. — Je n’en doute pas. — Mais ces enregistrements sont illégaux, ils ne peuvent pas être produits en justice? — Quoi ? —Quelle est la différence ?

What is Mathematics: Gödel's Theorem and Around. Incompleteness. By K. Podnieks what is mathematics, logic, mathematics, foundations, incompleteness theorem, mathematical, Gödel, Godel, book, Goedel, tutorial, textbook, methodology, philosophy, nature, theory, formal, axiom, theorem, incompleteness, online, web, free, download, teaching, learning, study, student, Podnieks, Karlis Personal page - click here. Visiting Gödel Places in Vienna, December 2012 K.Podnieks. Frege’s Puzzle from a Model-Based Point of View. K.Podnieks, J.Tabak. Mathematical Challenge (powers of 2, exponentiation, etc.)Gödel's Theorem in 15 Minutes (English, Latvian, Russian) Quote of the Day Personal page - click here

The nature of nothingness Zilch… Naught… Nada… It’s easy to dismiss the concept of nothing as, well, nothing. In fact, nothing is everything to science – understanding the intangible voids has lead to breakthroughs we could never have imagined possible. Read on to find out why nothing is more important than nothing… Nothingness: Zero, the number they tried to ban Every schoolchild knows the concept of zero – so why did it take so long to catch on? Follow its convoluted path from heresy to common sense Read more: "The nature of nothingness" I USED to have seven goats. This is not a trick question. This is a tangled story of two zeroes: zero as a symbol to represent nothing, and zero as a number that can be used in calculations and has its own mathematical properties. Zero the symbol was in fact the first of the two to pop up by a long chalk. It is through such machinations that the string of digits "2012" comes to have the properties of a number with the value equal to 2 × 103 + 0 × 102 + 1 × 101 + 2.

The 'Infinity Room': One of Many Ways to Imagine Infinity | Artists, Physicists, Mathematicians and Philosophers Contemplate Infinity As I stepped into the Infinity Environment on Wednesday morning (Feb. 1), I heard faint gasps from those around me. With apprehension, we entered a stark white, brilliantly lit room with no edges. The curved walls and angled lighting minimized shadows, giving the illusion that we were staring into a continuum. "There is no other time in your life when you will look out and see nothing at all," one young woman, an art student, whispered. The Infinity Environment, an art piece by Doug Wheeler, is currently on display at the David Zwirner Gallery in New York City. Art is one way to grapple with infinity. Andy Albrecht, a cosmologist and the chairman of the physics department at the University of California, Davis, has used the same analogy since he was a student. "In the case of the [art installation], the sense of it being infinite is just an optical illusion, because you could bring a ball and throw it against the wall and discover quite quickly that the room is finite," Albrecht said.

Holiday Fat Hack: How to Eat Like a Santa and Not Turn Into One Transformers 3 : la scène d'ouverture dévoilée 16 juil 2010 Par Anthony Garetti Après les photos de tournage, c'est au tour du début de l'intrigue de Transformers 3 de se dévoiler. C'est le site CHUD qui balance la chose, qui ne révéle cependant rien de l'histoire générale ou des personnages. Néanmoins attention, ça spoile un peu. Alors si vous ne voulez pas savoir comment le film commence, arrêter de lire tout de suite. Le film s'ouvre sur des perturbations qui ont lieu sur la surface de la Lune (peut-être dues à des robots), et l'info est relayée jusqu'aux plus hauts gradés de la NASA. Et toujours selon CHUD, cette introduction serait une idée de Steven Spielberg, qui officie également comme producteur exécutif sur les films Transformers, rappelons-le.

8 math talks to blow your mind Mathematics gets down to work in these talks, breathing life and logic into everyday problems. Prepare for math puzzlers both solved and unsolvable, and even some still waiting for solutions. Ron Eglash: The fractals at the heart of African designs When Ron Eglash first saw an aerial photo of an African village, he couldn’t rest until he knew — were the fractals in the layout of the village a coincidence, or were the forces of mathematics and culture colliding in unexpected ways? How big is infinity? Arthur Benjamin does “Mathemagic” A whole team of calculators is no match for Arthur Benjamin, as he does astounding mental math in the blink of an eye. Scott Rickard: The beautiful math behind the ugliest music What makes a piece of music beautiful? Margaret Wertheim: The beautiful math of coralThe intricate forms of a coral reef can only be expressed through hyperbolic geometry — and the only way humans can model it is by crocheting!

Los socorridos números de Fibonacci La secuencia de Fibonacci es una sucesión infinita de números naturales. Se denominan así los números que permiten contar los elementos de un conjunto. Son el primer grupo de números que fueron usados por los seres humanos para contar cosas. El uno, el dos, el cinco, por nombrar algunos, son números naturales. En la secuencia de Fibonacci cada número viene dado por la suma de los dos anteriores. Cierto hombre tenía una pareja de conejos juntos en un lugar cerrado y desea saber cuántos son creados a partir de este par en un año cuando es su naturaleza parir otro par en un simple mes, y en el segundo mes los nacidos parir también Esta secuencia numérica se ha hecho muy conocida en la cultura popular, podemos encontrar referencias a la misma en libros, canciones, películas y series de televisión. Series de televisión En Fringe la secuencia ha aparecido varias veces. En el drama procedimental Criminal Minds un asesino usa la secuencia de Fibonacci para encontrar a sus víctimas. Películas

Four color theorem Example of a four-colored map A four-coloring of a map of the states of the United States (ignoring lakes). In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color. Two regions are called adjacent if they share a common boundary that is not a corner, where corners are the points shared by three or more regions.[1] For example, in the map of the United States of America, Utah and Arizona are adjacent, but Utah and New Mexico, which only share a point that also belongs to Arizona and Colorado, are not. Despite the motivation from coloring political maps of countries, the theorem is not of particular interest to mapmakers. The four color theorem was proven in 1976 by Kenneth Appel and Wolfgang Haken. Precise formulation of the theorem[edit] History[edit]

Stop Firefox from Automatically Entering "Work Offline" Mode href="#c5714707">Entonces loves BACON: Yes, but mathematically speaking, it's NOT. That's jut the spin, and you can choose either one, but any Hillary responds: 1. Even WITH Florida and Michigan included, he is still ahead in the popular vote. 2. What swing states are you referring to? Also, recall that a lot of Clinton's big wins were early in the election. 3. Actually, they indicate the level of organization in a candidate's campaign. Frankly, if none of things were true, I'd be like, whatever, he's not my guy, but he's obviously a really viable candidate so, get on board. But they aren't true. Instead, what I know is he's a very, very week candidate in the GE on swing states that have been a problem for us, and I just hope that he can turn VA. You also have to remember that democratic primary =/= general election.

DENNIS HOPE ::: Interview: The dark side of his moon | Gonzaï Qu’on se le dise, Dennis Hope a eu un flair de dingue en ayant l’idée géniale de commercialiser des parcelles de Lune depuis le début des années 80. En trente ans à peine, ce sexagén Qu’on se le dise, Dennis Hope a eu un flair de dingue en ayant l’idée géniale de commercialiser des parcelles de Lune depuis le début des années 80. En trente ans à peine, ce sexagénaire aux allures de gourou s’en est foutu plein les poches et aurait vendu 400 millions de demi hectares de Lune au prix de 20 dollars l’unité à des pigeons s’appelant parfois Ronald Reagan, Jimmy Carter ou George W. Bush. Depuis 2004, Dennis Hope est allé encore plus loin dans son délire mégalomane en créant son Gouvernement Galactique et son Ambassade Lunaire, lesquels ont ratifié une constitution et possèdent désormais un organe législatif ainsi qu’une monnaie. D’où est venue cette idée saugrenue de vendre des parcelles de Lune? On était en 1980, je venais juste de divorcer, j’étais complètement fauché. Parfaitement.

Another Look at Prime Numbers Primes are numeric celebrities: they're used in movies, security codes, puzzles, and are even the subject of forlorn looks from university professors. But mathematicians delight in finding the first 20 billion primes, rather than giving simple examples of why primes are useful and how they relate to what we know. Somebody else can discover the "largest prime" -- today let's share intuitive insights about why primes rock: Primes are building blocks of all numbers. So what are prime numbers again? A basic tenet of math is that any number can be written as the multiplication of primes. And primes are numbers that can't be divided further, like 3, 5, 7, or 23. Well, 1 is special and isn't considered prime, since things get crazy because 1 = 1 * 1 * 1... and so on. Rewriting a number into primes is called prime decomposition, math speak for "find the factors". Well, not really. Analogy: Prime Numbers and Chemical Formulas Prime numbers are like atoms. Water = H20 = two hydrogens and one oxygen

Related:  Szkołamath&physics