background preloader

How do japanese multiply??

How do japanese multiply??
Related:  Mathématiques

The 'Infinity Room': One of Many Ways to Imagine Infinity | Artists, Physicists, Mathematicians and Philosophers Contemplate Infinity As I stepped into the Infinity Environment on Wednesday morning (Feb. 1), I heard faint gasps from those around me. With apprehension, we entered a stark white, brilliantly lit room with no edges. The curved walls and angled lighting minimized shadows, giving the illusion that we were staring into a continuum. "There is no other time in your life when you will look out and see nothing at all," one young woman, an art student, whispered. The Infinity Environment, an art piece by Doug Wheeler, is currently on display at the David Zwirner Gallery in New York City. Art is one way to grapple with infinity. Andy Albrecht, a cosmologist and the chairman of the physics department at the University of California, Davis, has used the same analogy since he was a student. "In the case of the [art installation], the sense of it being infinite is just an optical illusion, because you could bring a ball and throw it against the wall and discover quite quickly that the room is finite," Albrecht said.

Wolfram|Alpha: Computational Knowledge Engine Chaos theory A double rod pendulum animation showing chaotic behavior. Starting the pendulum from a slightly different initial condition would result in a completely different trajectory. The double rod pendulum is one of the simplest dynamical systems that has chaotic solutions. Chaos: When the present determines the future, but the approximate present does not approximately determine the future. Chaotic behavior can be observed in many natural systems, such as weather and climate.[6][7] This behavior can be studied through analysis of a chaotic mathematical model, or through analytical techniques such as recurrence plots and Poincaré maps. Introduction[edit] Chaos theory concerns deterministic systems whose behavior can in principle be predicted. Chaotic dynamics[edit] The map defined by x → 4 x (1 – x) and y → x + y mod 1 displays sensitivity to initial conditions. In common usage, "chaos" means "a state of disorder".[9] However, in chaos theory, the term is defined more precisely. where , and , is: .

Four color theorem Example of a four-colored map A four-coloring of a map of the states of the United States (ignoring lakes). In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color. Two regions are called adjacent if they share a common boundary that is not a corner, where corners are the points shared by three or more regions.[1] For example, in the map of the United States of America, Utah and Arizona are adjacent, but Utah and New Mexico, which only share a point that also belongs to Arizona and Colorado, are not. Despite the motivation from coloring political maps of countries, the theorem is not of particular interest to mapmakers. The four color theorem was proven in 1976 by Kenneth Appel and Wolfgang Haken. Precise formulation of the theorem[edit] History[edit]

WWW Interactive Multipurpose Server Voici les 20 Activités WIMS les plus populaires. >> Cours Doc Dérivée, document d'introduction à la dérivée. ( Bernadette Perrin-Riou;Philippe Rambour) Statistiques, document sur les premières notions de statistique niveau collège. ( Jean-Baptiste Frondas;Bernadette Perrin-Riou) Doc Nombres complexes, document de révision sur les nombres complexes. ( Marie-Claude David;Bernadette Perrin-Riou) Doc Fractions rationnelles, document sur la décomposition des fractions rationnelles dans des cas simples. ( Bernadette Perrin-Riou) Doc Changement de variables, document sur les méthodes d'intégration. ( Marie-Claude David;Bernadette Perrin-Riou) Doc Nombres relatifs, document sur l'introduction des nombres relatifs. ( Jean-Baptiste Frondas;Bernadette Perrin-Riou) Doc Fonctions de plusieurs variables, document sur les notions de gradient, approximation linéaire, courbes de niveau. ( Bernadette Perrin-Riou) L'essentiel sur les puissances, cours sur les puissances pour les quatrièmes.

Mindfuck Math A mathematical bug shows us why the 3D universe leads to Murphy's Law Let's also not forget that unlike, a path, the movement of any string no matter how thin is at least partially governed by the slight recoiling that occurs at the bends and curves. I think analogies are wonderful for explaining complex systems to simple folk like myself, but I hate it when "scientists" try to prove a mathematical system with an insufficient metaphor. Exactly what I was thinking. The way a string falls is not random. Even if you stood there shaking the box it still has all manner of constraints based on where parts of the string both forward and backward from each position are. Like if you have a spiral, and you imagine this bugs walk is from the top spiralling down, this bug cannot actually walk directly downwards because another part of the spiral is already there, no matter how much you try to randomise it with shaking.

Courbe de Joukowski COURBE DE JOUKOVSKI, PROFIL D'AILE D'AVIONJoukowski curve, airfoil, Joukowskische Kurve Les courbes de Joukovski sont les images des cercles du plan par la transformation conforme de Joukovski ; lorsque le cercle de départ (C) passe par A(a,0) ou A'(-a,0) (points fixes de la transformation), la courbe de Joukovski possède un point de rebroussement en A, et prend dans certains cas une allure de profil d'aile d'avion.La transformation de Joukovski réalise une représentation conforme de l'extérieur du disque associé à (C) sur l'extérieur de la courbe, ce qui permet d'étudier les problèmes d'écoulement autour du profil de l'aile d'avion en se ramenant à un cercle. Construction de la courbe, utilisant le cercle de départ et le cercle image de ce cercle par la transformation © Robert FERRÉOL, Jacques MANDONNET 2002

A mathematical bug shows us why the 3D universe carries the possibility of despair. Really. For N bug-steps, there are two things to consider: how many total possible paths of N steps the bug has available to it, and how many of those N-step paths lead home. For example, let's look at 1D. After just 2 steps (N=2), where the bug could only go left or right each step, the bug has had 4 possible paths available to it: LR - Home RL - Home Of those, 2 lead home, giving it a home-probability of 50% after 2 steps. Now let's look at 4 steps (still in 1D). LLRR - Home LRLL - Home (earlier) LRLR - Home (twice) LRRL - Home (twice) LRRR - Home (earlier) RLLL - Home (earlier) RLLR - Home (twice) RLRL - Home (twice) RLRR - Home (earlier) RRLL - Home Out of 16 possible 4-step paths, 10 of them led back home. Now let's look at 2D, where the bug has 4 choices each step: up, down, left, or right. 4 steps leaves the bug with 256 possible paths, 84 of which lead home at either 2 or 4 steps. That's why the bug isn't guaranteed to make it back in 3D.

Le principe de l'architecture von Neumann ou les débuts de l'informatique En 1945, von Neumann rédige le principe de l'architecture von Neumann : c'est celle de la totalité des ordinateurs aujourd'hui, une mémoire, un système central de calcul, une unité d'assemblage des données. Le mathématicien Alan turing avait prouvé que toute la réalité du monde y compris l'univers et ses lois pouvaient se décrire, se coder sous forme de 0 et de 1, imprimés sur un simple rouleau de papier. Pendant la Seconde Guerre mondiale, Von Neumann qui travaillait sur la bombe H, a participé à l'élaboration des premiers calculateurs électroniques. Lienac construit par l'armée américaine pour calculer des tables de projectiles n'était pas tout à fait un ordinateur, même s'il possédait une mémoire et qu'on pouvait le reprogrammer en branchant ou en débranchant des fiches. Von Neumann voulait améliorer Liénac pour la mise au point de la bombe H. Réalisateur : Philippe Calderon Producteur : Arte France, BBC Productions Auteur : Philippe Calderon Production : 2014

Uncovering Da Vinci's Rule of the Trees As trees shed their foliage this fall, they reveal a mysterious, nearly universal growth pattern first observed by Leonardo da Vinci 500 years ago: a simple yet startling relationship that always holds between the size of a tree's trunk and sizes of its branches. A new paper has reignited the debate over why trees grow this way, asserting that they may be protecting themselves from wind damage. "Leonardo's rule is an amazing thing," said Kate McCulloh of Oregon State University, a scientist specializing in plant physiology. "Until recently, people really haven't tested it." Da Vinci wrote in his notebook that "all the branches of a tree at every stage of its height when put together are equal in thickness to the trunk." To investigate why this rule may exist, physicist Christophe Eloy, from the University of Provence in France, designed trees with intricate branching patterns on a computer. Once the skeleton was completed, Eloy put it to the test in a virtual wind tunnel.

Comment calculer une racine carrée à la main wikiHow est un wiki, ce qui veut dire que de nombreux articles sont rédigés par plusieurs auteur.e.s. Pour créer cet article, 48 personnes, certaines anonymes, ont participé à son édition et à son amélioration au fil du temps. Catégories: Mathématiques Autres langues : English: Calculate a Square Root by Hand, Italiano: Calcolare la Radice Quadrata a Mano, Español: calcular una raíz cuadrada, Deutsch: Die Quadratwurzel von Hand berechnen, Português: Calcular uma Raiz Quadrada à Mão, Русский: найти квадратный корень числа вручную, 中文: 手算平方根, Nederlands: De wortel van een getal uitrekenen zonder rekenmachine, Bahasa Indonesia: Menghitung Akar Kuadrat Secara Manual, Čeština: Jak vypočítat odmocninu bez kalkulačky, ไทย: คำนวณหารากที่สองด้วยมือ, Türkçe: Karekök Elle Nasıl Hesaplanır, हिन्दी: हाथों से वर्गमूल की गणना करें, 한국어: 손으로 루트 값 계산하기, العربية: حساب الجذر التربيعي يدويا Imprimer