background preloader

Astrophysics

Astrophysics
Astrophysics (from Greek astron, ἄστρον "star", and physis, φύσις "nature") is the branch of astronomy that deals with the physics of the universe, especially with "the nature of the heavenly bodies, rather than their positions or motions in space."[1][2] Among the objects studied are galaxies, stars, planets, extrasolar planets, the interstellar medium and the cosmic microwave background.[3][4] Their emissions are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics. In practice, modern astronomical research often involves a substantial amount of work in the realm(s) of theoretical and/or observational physics.

http://en.wikipedia.org/wiki/Astrophysics

Related:  ASTRONOMYwikipedia.org and pagesouter space

Interstellar medium In astronomy, the interstellar medium (or ISM) is the matter that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, dust, and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field.

Cosmochemistry Meteorites are often studied as part of cosmochemistry. Cosmochemistry or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions.[1] This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the solar system.

Interstellar nitrogen monohydride Nitrogen monohydride (NH) is a simple compound that has been detected in interstellar space. History[edit] One of the earliest papers on the NH molecule was in 1976 by Richard M. Luminosity Image of galaxy NGC 4945 showing the huge luminosity of the central few star clusters, suggesting there are 10 to 100 supergiant stars in each of these, packed into regions just a few parsecs across. Luminosity is generally understood as a measurement of brightness. Each discipline, however, defines the term differently, depending on what is being measured. In astronomy, luminosity measures the total amount of energy emitted by a star or other astronomical object per unit time. In SI units this is expressed as joules per second or watts.

Astrochemistry Astrochemistry is the study of the abundance and reactions of chemical elements and molecules in the universe, and their interaction with radiation.[citation needed] The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics.

Through the Wormhole Development[edit] On 17 February 2011, Sean Carroll confirmed on his Twitter page that he has started shooting Season 2 of Through the Wormhole.[3] On 17 May 2011, Discovery confirmed the second season would premiere on Science on 8 June 2011.[4] On 3 January 2012, Sean Carroll posted a picture on his Twitter page, mentioning that it was taken during the taping of Season 3.[5] Season 3 premiered on Tuesday, 6 March 2012. The Science Channel later released a list of episodes comprising the rest of the season.[6] Season 4 of Through the Wormhole (which is 10 episodes long) premiered on 20 March 2013.[7] On October 9, 2013, the Science Channel began airing enhanced episodes of the show under the title Beyond the Wormhole with Morgan Freeman.[8]

Light-year The light-year is most often used when expressing distances to stars and other distances on a galactic scale, especially in non-specialist and popular science publications. The unit usually used in professional astrometry is the parsec (symbol: pc, approximately 3.26 light-years; the distance at which one astronomical unit subtends an angle of one second of arc).[1] Definitions[edit] As defined by the IAU, the light-year is the product of the Julian year[note 2] (365.25 days as opposed to the 365.2425-day Gregorian year) and the speed of light (299792458 m/s).[note 3] Both these values are included in the IAU (1976) System of Astronomical Constants, used since 1984.[3] From this the following conversions can be derived.

Astrobiology Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe: extraterrestrial life and life on Earth. This interdisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System, the search for evidence of prebiotic chemistry, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in outer space.[2] Astrobiology addresses the question of whether life exists beyond Earth, and how humans can detect it if it does.[3] (The term exobiology is similar but more specific — it covers the search for life beyond Earth, and the effects of extraterrestrial environments on living things.)[4] Overview[edit] It is not known whether life elsewhere in the universe would utilize cell structures like those found on Earth. (Chloroplasts within plant cells shown here.)[19]

Black hole A black hole is defined as a region of spacetime from which gravity prevents anything, including light, from escaping.[1] The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole.[2] Around a black hole, there is a mathematically defined surface called an event horizon that marks the point of no return. The hole is called "black" because it absorbs all the light that hits the horizon, reflecting nothing, just like a perfect black body in thermodynamics.[3][4] Quantum field theory in curved spacetime predicts that event horizons emit radiation like a black body with a finite temperature. This temperature is inversely proportional to the mass of the black hole, making it difficult to observe this radiation for black holes of stellar mass or greater. Objects whose gravity fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace. History General relativity

Astronomical object Above the round domes of La Silla Observatory, three astronomical objects in the Solar System — Jupiter (top), Venus (lower left), and Mercury (lower right).[1] Types of Solar System bodies. Astronomical objects or celestial objects are naturally occurring physical entities, associations or structures that current science has demonstrated to exist in the observable universe.[2] The term astronomical object is sometimes used interchangeably with astronomical body. Typically, an astronomical (celestial) body refers to a single, cohesive structure that is bound together by gravity (and sometimes by electromagnetism). Examples include the asteroids, moons, planets and the stars. Astronomical objects are gravitationally bound structures that are associated with a position in space, but may consist of multiple independent astronomical bodies or objects.

Archaeoastronomy Archaeoastronomy (also spelled archeoastronomy) is the study of how people in the past "have understood the phenomena in the sky, how they used these phenomena and what role the sky played in their cultures."[1] Clive Ruggles argues it is misleading to consider archaeoastronomy to be the study of ancient astronomy, as modern astronomy is a scientific discipline, while archaeoastronomy considers symbolically rich cultural interpretations of phenomena in the sky by other cultures.[2][3] It is often twinned with ethnoastronomy, the anthropological study of skywatching in contemporary societies. Archaeoastronomy is also closely associated with historical astronomy, the use of historical records of heavenly events to answer astronomical problems and the history of astronomy, which uses written records to evaluate past astronomical practice. Archaeoastronomy can be applied to all cultures and all time periods. History of archaeoastronomy[edit]

Related: