
Projections and propaganda - Map skills and higher-order thinking Interestingly, until the mid-twentieth century, publishers of maps and textbooks resisted using new projections (many of which were, by then, quite old). Why? Maybe because they wanted to stick with what was familiar to people — or maybe because Mercator fills a rectangular page so neatly and they didn’t want to waste all that space in the corners. Mercator does have its advantages, of course. The trouble with Mercator Because Mercator misrepresents the true areas of nations and continents, it can lead to misunderstanding — intentional or unintentional. The Cold War During the Cold War, maps of “us” and “them” were often drawn to emphasize the threat represented by the USSR and its allies. Figure 10-1. Redrawn in Robinson projection — a popular compromise between equal-area and conformal mapping — the USSR becomes a little less menacing. Figure 10-2. Now redraw it again in the Peters equal-area projection, and the USSR shrinks to its true size. Figure 10-3. Figure 10-4. North and South
The Arthur H. Robinson Map Library at the University of Wisconsin-Madison Robinson called this the orthophanic projection (which means "right appearing"), but this name never caught on. In at least one reference book, this projection is termed the Pseudocylindrical Projection with Pole Line, which is highly descriptive (the "pole line" comes from the fact that the North and South Poles on a Robinson projection are shown as lines and not points), but so unwieldily that it is not surprising that this name also failed to gain much acceptance. The "Robinson projection" is unquestionably the name of choice. The Robinson projection is highly unique. Form: The Robinson projection can best be described as being pseudocylindrical, but given its unique method of development, it does not fall perfectly into any known form category. Case: The Robinson projection is basically secant, with lines of tangency running along the 38° 0' 0"N and 38° 0' 0"S lines of latitude. Aspect: Robinson projections have normal aspects. Distortions Uses The Robinson projection is unique.
La proyección de Mercator vs la proyección de Gall-Peters | The Túzaro Hace ya una buena cantidad de años, cuando yo aún estaba en el instituto (soy suficientemente viejo como para haber estudiado BUP, pero suficientemente joven como para haber sido uno de los últimos en hacerlo), hubo en España una fuerte campaña por parte de organizaciones no gubernamentales (ONG) de ayuda al desarrollo para que el 0.7% del Producto Interior Bruto se dedicara a la ayuda a países desfavorecidos. Entre los muchos actos que se realizaron en el marco de esta campaña recuerdo un coloquio de representantes de diversas ONG de ayuda al desarrollo en mi instituto. Uno de los ponentes denunció que el mapa del mundo que estamos acostumbrados a utilizar en los colegios e institutos, la proyección de Mercator, distorsiona intencionadamente el tamaño de los países desarrollados para hacerlos mucho más grandes y significativos que los países en vías de desarrollo, que aparecen comparativamente reducidos en tamaño. La proyección de Mercator Las críticas al mapa de Mercator Me gusta:
Map Projections: Azimuthal Projections <br /><table class="warning" summary=""><tr><td><h2 class="warning">JavaScript Is Not Available</h2><table summary=""><tr><td><img src="../../StockImg/warning36.png" alt=""></td><td> </td><td><em>Since JavaScript is disabled or not supported in your browser, some or all maps in this page will not be displayed.</em></td></tr></table></td></tr></table><br /> Introduction Given a reference point A and two other points B and C on a surface, the azimuth from B to C is the angle formed by the minimum-distance lines AB and AC (which, on a sphere, are geodesic or great circle arcs). In other words, it represents the angle one sitting on A and looking at B must turn in order to look at C. All azimuthal projections preserve the azimuth from a reference point (the conceptual center of the map), thus presenting true direction (but not necessarily distance) to any other points. In a few two-point azimuthal projections, correct angles are presented from two specific locations instead of one.
PUEMAC. Mapas. P. Cilíndrica Proyección cilíndrica equidistante. Este tipo de proyección se forma trayendo un cilindro en contacto con la esfera y 'pelando' los meridianos de la esfera para unirlos a la superficie del cilindro sin distorsionar. Esto mantiene el factor de escala en 1. Al hacerlo, es necesario estirar cada paralelo de latitud. Otro ejemplo es la proyección de James Gall: Se nota lo siguiente: Al igual que en la proyección cilíndrica normal, los meridianos son rectos y paralelos uno a otro. Proyección cilíndrica de áreas iguales. Se mostró que la proyección cilíndrica equidistante distorsiona las paralelas por cierto factor de escala en tanto deja a los meridianos sin distorsionar. Las características a notar son: El factor de escala en la región ecuatorial es cercano a 1 tanto para los meridianos como para los paralelos. La proyección de Mercator Una de las versiones más importantes de todas las proyecciones cilíndricas es la conforme a la cual se da el nombre de Mercator. Proyección oblicua de Mercator.
Mercator Projection by Matt T. Rosenberg The Mercator projection was developed in 1569 by Gerardus Mercator as a navigation tool. The Mercator map has always been a poor projection for a world map yet due to its rectangular grid and shape, geographically illiterate publishers found it useful for wall maps, atlas maps, and maps in books and newspapers published by non-geographers. As far back as 1902, a cartographer warned, "People's ideas of geography are not founded on actual facts but on Mercator's map." Mercator Projection Fortunately, over the past few decades, the Mercator projection has fallen into disuse from many reliable sources. In 1989, seven North American professional geographic organizations (including the American Cartographic Association, National Council for Geographic Education, Association of American Geographers, and the National Geographic Society) adopted a resolution that called for a ban on all rectangular coordinate maps. Next page > Alternatives > Page 1, 2, 3
love-hearts-map-of-the-world-map-michael-tompsett Análisis de Poemas Why does Google maps use the inaccurate, ancient and distorted Mercator Projection? By certain measures, such as area, the Mercator map is probably the most distorted, so the question is legitimate. All projections from a sphere to a plane are, of course, distorted. When you fix one kind of distortion, you increase another kind of distortion. The primary purpose of Google Maps is to provide local navigation, street maps and directions, rather than to provide a planetary view of the Earth. A good alternative to Mercator is to not use any projection at all (i.e. map all the data to a three dimensional mesh). VZoc wrote: "I wonder whether a conversion between projections is easily possible. Yes, these conversions are easy for a computer.
POETAS ESPAÑOLES Location and Maps Programming Guide: Displaying Maps The Map Kit framework lets you embed a fully functional map interface into your app. The map support provided by this framework includes many features of the Maps app in both iOS and OS X. You can display standard street-level map information, satellite imagery, or a combination of the two. You can zoom, pan, and pitch the map programmatically, display 3D buildings, and annotate the map with custom information. The Map Kit framework also provides automatic support for the touch events that let users zoom and pan the map. To use the features of the Map Kit framework, turn on the Maps capability in your Xcode project (doing so also adds the appropriate entitlement to your App ID). Understanding Map Geometry A map view contains a flattened representation of a spherical object, namely the Earth. Map Coordinate Systems To understand the coordinate systems used by Map Kit, it helps to understand how the three-dimensional surface of the Earth is mapped to a two-dimensional map. Altitude.