background preloader

Solar Roadways - A Real Solution

Related:  Routes solairesSUP&R ITN

La route solaire Le projet de transformer 65000 km2 de routes bitumées au USA par des routes formées d’un revêtement solaire, vient d’être doté d’un budget. Le premier prototype disposera de 100 000 $ de fonds, fournis par le ministère des transports, uniquement pour construire un pavé de 3 mètres carrés. Techniquement, un pavé est formé de trois couches: La base contient les cables.La couche intermédiaire incorpore le matériel photovoltaïque, l’électronique.La couche supérieure de protection. La couche intermédiaire contiendra aussi des LED, pour éclairer les signaux routiers tels que la bande jaune, plutôt que les peindre, et permettra de doter la route de signaux temporaire, ce qui améliorera grandement la circulation. Avec les technologies solaires actuelles délivrant une productivité de 15%, la route solaire de 65 000 km2 à elle seule suffirait à produire trois fois plus d’énergie électrique que n’en consomment actuellement les USA! Le site évoque une sentence de Alan Watts:

Instructables - Make, How To, and DIY Bioenergy :: LACE :: Outreach About outreach The outreach strategy will be to: promote the programme and assist in the promotion of BSBEC (BBSRC Sustainable Bioenergy Centre) to other groups, academic and industrial, in the UK and internationally ensure appropriate dissemination of findings to the relevant communities (researchers, educators, stakeholders, business leaders and the general public) reinforce the programme’s and BSBEC's sustainability by initiating new collaborative enterprises. Through delivery of inter-disciplinary meetings (lecture series, annual conferences, short courses) we aim to develop shared goals for research within the wider Bioenergy Community. As a member of Universitas 21 (U21), we will establish a Collaborative Group for Bioenergy research via the U21 international network of 21 leading research-intensive universities in 13 countries. More

American Transportation statistics - How United States ranks Definitions Airports > With paved runways > 1,524 to 2,437 m: This entry is derived from Transport > Airports > With paved runways, which gives the total number of airports with paved runways (concrete or asphalt surfaces) by length. For airports with more than one runway, only the longest runway is included according to the following five groups - (1) over 3,047 m (over 10,000 ft), (2) 2,438 to 3,047 m (8,000 to 10,000 ft), (3) 1,524 to 2,437 m (5,000 to 8,000 ft), (4) 914 to 1,523 m (3,000 to 5,000 ft), and (5) under 914 m (under 3,000 ft). Only airports with usable runways are included in this listing. Not all airports have facilities for refueling, maintenance, or air traffic control. Citation "United States Transport Stats", NationMaster. "United States Transport Stats, NationMaster." 1960-2013. 'United States Transport Stats, NationMaster', < [assessed 1960-2013] "United States Transport Stats", NationMaster.

Soil Stabilizer, Asphalt Alternative, Cement Alternatives Bientôt des routes faites de panneaux solaires ? Capable de donner sa confiance à des entrepreneurs archarnés travaillant dans un garage, l'Amérique réitère tous les jours avec les technologies vertes ce qu'elle a réussi avec les technologies de l'information. Ainsi la petite entreprise américaine Solar Roadways a reçu une suvbention de 100 000 dollars de la part du Département américain des transports pour développer un prototype de route solaire, autrement dit une route faite de panneaux solaires sur lesquels les voitures pourraient rouler. [photo extraite de la vidéo ci-dessous] Pour Scott Brusaw le fondateur de Solar Roadways rien ne s'oppose à la réalisation de routes faites de panneaux solaires, sauf que personne n'a encore jamais tenté de rouler sur des routes de verre. La une du site de Solar Roadways est un condensé de la pensée de ses fondateurs Scott Brusaw explique que les seules routes nationales américaines, sans compter les autoroutes représentent 230 000 kilomètres. Est-ce vraiment possible ?

New battery could change world, one house at a time In a modest building on the west side of Salt Lake City, a team of specialists in advanced materials and electrochemistry has produced what could be the single most important breakthrough for clean, alternative energy since Socrates first noted solar heating 2,400 years ago. The prize is the culmination of 10 years of research and testing -- a new generation of deep-storage battery that's small enough, and safe enough, to sit in your basement and power your home. It promises to nudge the world to a paradigm shift as big as the switch from centralized mainframe computers in the 1980s to personal laptops. But this time the mainframe is America's antiquated electrical grid; and the switch is to personal power stations in millions of individual homes. Former energy secretary Bill Richardson once disparaged the U.S. electrical grid as "third world," and he was painfully close to the mark. Solar energy has been around, of course, but it's been prohibitively expensive. And then you recharge.

Use video not journals to disseminate research Business school professors and publishing houses have to adapt to the 21st century and embrace new technologies One of the main objectives of academic research is to have an impact on society and its development. But as much of this research is published in specialised international academic journals, it is read by only a limited number of people. Consequently, its impact and reach are very limited. We are all familiar with the emerging social media landscape – YouTube, Vimeo and other popular social media sharing websites as well as video sharing concepts such as TED Talks – where popular speakers share their ideas in a convenient, accessible and effective video format streamed online. In other words, why does academia lag so far behind the current audio-visual and digital revolution? Online video sharing technologies offer promising new ways for disseminating breakthroughs to wider audiences, making the latest research accessible and easier to share.

History of Asphalt Laura Ingalls Wilder, author of the beloved Little House on the Prairie, tells of her first encounter with an asphalt pavement. She was on a wagon journey with her parents in 1894 that took them through Topeka. "In the very midst of the city, the ground was covered by some dark stuff that silenced all the wheels and muffled the sound of hoofs. Today, this dark, resilient material covers more than 94 percent of the paved roads in the United States; it’s the popular choice for driveways, parking lots, airport runways, racetracks, tennis courts, and other applications where a smooth, durable driving surface is required. But the story of asphalt begins thousands of years before the founding of the United States. The first recorded use of asphalt as a road building material was in Babylon around 625 B.C., in the reign of King Naboppolassar. We know that the ancient Greeks were familiar with asphalt and its properties. Asphalt Roads Come to America Patented Roadways

Fractal Field Breakthru-Technologies SCHEDULE and Online Links Route solaire : informer en temps réel, éviter l’enneigement, produire de l’énergie…. - Déplacements Image d'une route solaire indiquant la signalisation grâce à des LEDs La « Solar Roadway », concept de route constituée de panneaux solaires, vient de recevoir un prix de 100 000 dollars par le Département des transports américain. Elle se veut une alternative intelligente à la traditionnelle route en asphalte. La route solaire est un assemblage de panneaux solaires multifonctions, carrés de 12 pieds , tous connectés entre eux. Verticalement, elle est divisée en trois couches.Translucide, imperméable et capable de supporter une traction importante, la couche supérieure doit supporter le passage des véhicules. La couche intermédiaire héberge des cellules de types et de fonctions variés. Informer en temps réel Des cellules constituées de LEDs permettent de donner des informations en temps réel aux automobilistes. Eviter l'enneigement Produire et distribuer de l'énergie en réseau A terme, l'implantation de routes solaires permettrait de former un formidable réseau énergétique.

Appliance Efficiency and Long-Run Energy Demand | Precourt Energy Efficiency... Appliance Efficiency and Long-Run Energy Demand Matthew Harding (PI), David Rapson (PI) This project will examine how people make decisions about appliance purchases and the effect that these choices have on energy demand. Currently, approximately half of U.S. greenhouse gas emissions are attributable to residential appliance use. However, consumers can reduce their long-run energy needs by replacing old appliances with ones that are more energy efficient. We will use the latest econometric techniques on existing data to model the complex dynamic decision faced by consumers when choosing appliances. Return to Top Final Report: Appliance Efficiency and Long-Run Energy Demand (124KB PDF) Matthew Harding Project Abstract: Appliance Efficiency and Long-Run Energy Demand (0.1MB PDF) Matthew Harding, David Rapson

Related:  kozrak