KSEG Update: May 1, 2007 -- Mongolian Batnasan sent me a translation into Mongolian. Update: Februrary 3, 2006 -- KSEG 0.403 and Traditional Chinese I finally got around to a bit of maintenance on KSEG: it now uses qmake for building and should build on Qt 3.x without the compatibility headers. Yao Chang-Li sent me a Traditional Chinese translation and help file. Update: May 15, 2005 -- KSEG in Chinese Xu Xianghua kindly contributed Chinese translations of the KSEG UI and the help. Update: July 3, 2004 -- KSEG 0.401 for Windows! By popular demand, despite my dislike for microsoft, I've ported KSEG to windows using the old Qt noncommercial version 2.3. Sample Output Images (not screenshots--those are below) of a well-known theorem and a strange locus, both exported with KSEG: Description: KSEG is a Free (GPL) interactive geometry program for exploring Euclidean geometry. KSEG can be used in the classroom, for personal exploration of geometry, or for making high-quality figures for LaTeX. History
Binomial Theorem A binomial is a polynomial with two terms What happens when we multiply a binomial by itself ... many times? Example: a+b a+b is a binomial (the two terms are a and b) Let us multiply a+b by itself using Polynomial Multiplication : (a+b)(a+b) = a2 + 2ab + b2 Now take that result and multiply by a+b again: (a2 + 2ab + b2)(a+b) = a3 + 3a2b + 3ab2 + b3 And again: (a3 + 3a2b + 3ab2 + b3)(a+b) = a4 + 4a3b + 6a2b2 + 4ab3 + b4 The calculations get longer and longer as we go, but there is some kind of pattern developing. That pattern is summed up by the Binomial Theorem: The Binomial Theorem Don't worry ... it will all be explained! And you will learn lots of cool math symbols along the way. Exponents First, a quick summary of Exponents. An exponent says how many times to use something in a multiplication. Example: 82 = 8 × 8 = 64 An exponent of 1 means just to have it appear once, so we get the original value: Example: 81 = 8 An exponent of 0 means not to use it at all, and we have only 1: Example: 80 = 1 an-kbk n!
dCodes Shortcodes are pre-defined HTML/CSS codes. By adding a few line lines of codes to your webpages you can embed YouTube videos, add clickable buttons, twitter feeds or stylize your HTML tables! These are just some of the 1500+ shortcode functions available in the dCodes HTML Framework. To use a shortcode, simply copy the codes to your HTML document! Shortcode Example: Current code: Visit Google : <a href=" Google</a> To buttonize this, we include the required <CSS+JS> files and then call one of the many available "button" shortcode styles. Updated code: <a href=" class="dc_awb_large dc_flat">Visit Google</a> The browser will now render the code as: Visit Google How do I add shortcodes? To add a shortcode to your page, simply toggle the "View code" link under each shortcode example. Note: Make sure you include the jQuery library if any <javascript> tags are called.
Top 24 Simple, Yet Beautiful CSS3 Table Templates And Examples HTML5 offers web developers a choice of pre-built elements that can be used to extend the functionality of a website beyond the ordinary, whereas in the old days we might have had to use visual imagery to explain things better, thanks to advancements in JavaScript (jQuery), HTML5 and CSS3 — it is now possible for developers to create and style dynamic HTML5 content without the need to use heavy programming concepts. One such element that continues to help assess online data better is “table” — the table element can be used to display raw data in a selection of different appearances; tables. HTML tables are not necessarily something that everyone will be using on their websites, however they are incredibly helpful when it comes to presenting data through rows and columns, and also for organizing data and information in a more accessible way. Bootstrap CSS Bootstrap is the most famous front-end development framework on the planet, it’s being used everywhere; well, almost! Download Calendar
Bibliographie Pourquoi BibTeX ? Il peut sembler bizarre de devoir recourir à un programme externe pour générer quelques lignes de texte à la fin d'un mémoire. Néanmoins l'intérêt de BibTeX apparaîtra très rapidement à l'utilisateur désireux de construire sa bibliographie au fur et à mesure de la rédaction du texte, tout en respectant les conventions, par exemple dans le cas d'une thèse... De plus, la plupart des bibliographies d'ouvrages scientifiques se doivent d'être au format BibTeX, afin de ne pas voir à taper les entrées bibliographiques, mais de pouvoir utiliser les bases de données existantes. Enfin, BibTeX c'est la possibilité de changer l'ordre utilisé dans la bibliographie (alphabétique, chronologique, thématique, ordre de citation dans le texte) sans tout retaper. Le principe Lorsque l'utilisateur veut citer une référence dans le fichier LaTeX, il appelle l'étiquette qui identifie cette référence dans le fichier .bib, par la commande \cite{}. En pratique Construire la base de données Exemple
MathJax for TW5 — Plugin for TiddlyWiki 5 Binomial Expansion Calculator - eMathHelp Your input: expand (x+2)10. Expansion is given by the following formula: (a+b)n=n∑k=0(nk)an−kbk, where (nk)=n!(n−k)!k! and n! We have that a=x, b=2, n=10. Therefore, (x+2)10=10∑k=0(10k)(x)10−k(2)k Now, calculate product for every value of k from 0 to 10. k=0: (100)(x)10−0(2)0=10! k=1: (101)(x)10−1(2)1=10! k=2: (102)(x)10−2(2)2=10! k=3: (103)(x)10−3(2)3=10! k=4: (104)(x)10−4(2)4=10! k=5: (105)(x)10−5(2)5=10! k=6: (106)(x)10−6(2)6=10! k=7: (107)(x)10−7(2)7=10! k=8: (108)(x)10−8(2)8=10! k=9: (109)(x)10−9(2)9=10! k=10: (1010)(x)10−10(2)10=10! Finally, (x+2)10=10∑k=0(10k)(x)10−k(2)k=(100)(x)10−0(2)0+(101)(x)10−1(2)1+(102)(x)10−2(2)2+(103)(x)10−3(2)3+(104)(x)10−4(2)4+(105)(x)10−5(2)5+(106)(x)10−6(2)6+(107)(x)10−7(2)7+(108)(x)10−8(2)8+(109)(x)10−9(2)9+(1010)(x)10−10(2)10=x10+20x9+180x8+960x7+3360x6+8064x5+13440x4+15360x3+11520x2+5120x+1024 Answer: (x+2)10=x10+20x9+180x8+960x7+3360x6+8064x5+13440x4+15360x3+11520x2+5120x+1024
HTML Standard Index The following sections only cover conforming elements and features. Elements This section is non-normative. An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above. † Categories in the "Parents" column refer to parents that list the given categories in their content model, not to elements that themselves are in those categories. Element content categories * The tabindex attribute can also make any element into interactive content. Attributes Element Interfaces All Interfaces Events See also media element events, application cache events, and drag-and-drop events. MIME Types The following MIME types are mentioned in this specification: application/atom+xml Atom [ATOM] application/ecmascript JavaScript (legacy type) [JAVASCRIPT] application/javascript application/json application/x-ecmascript application/x-javascript application/octet-stream Generic binary data [RFC2046] application/microdata+json Microdata as JSON application/x-www-form-urlencoded
Getting StartED with CSS excerpts: Styling tables, backgrounds, and borders Knowledge of cascading style sheets (CSS) is essential for developing modern, attractive websites, but many beginners are put off by the need to learn about unfamiliar concepts, such as selectors, properties, and classes, before they can achieve anything. Getting StartED with CSS takes a practical approach by showing you how to use CSS in simple stages, starting by changing the default appearance of HTML tags to improve the look of text and links. It assumes no prior knowledge of CSS and avoids bombarding you with unnecessary technical details. Aimed at anybody who wants to learn how to style websites using CSS, this book covers the following topics: What Is CSS, and Why Should I Learn It? The printed book is available through Friends of Ed, an APress company. Getting StartED with CSS © 2009 David Powers. What Is CSS, and Why Should I Learn It? In the beginning, the Web was simple. Download the complete chapter: Chapter 1: What Is CSS and Why Should I Learn It? How Do I Style Tables?
Pense-bête pour Natbib Pense-bête pour natbib (Adapté de la version anglaise décrivant la version 7.0b du 2002/02/27) Pour une descritption plus détaillée du paquetage natbib, veuiller vous référer au fichier source LATEX natbib.dtx. Introduction Le paquetage natbib est une réimplementation de la commande LATEX \cite pour qu'elle marche avec des citations de type auteur-année, mais aussi numérique. Il est compatible avec les fichiers de bibliographie standards tels que plain.bst, mais aussi d'autres formats tels que harvard, apalike, chicago, astron, authordate. Chargement On charche le paquetage avec la commande \usepackage[options]{natbib}. Replacement des styles bibliographiques Natbib contient trois fichiers .bst pour remplacer les fichiers standards et numériques de LATEX: plainnat.bst abbrvnat.bst unsrtnat.bst Commandes de base Le paquetage natbib a deux commandes de citation, \citet et \citep, pour des citations dans le texte ou entre parenthèses. Citations multiples Mode numérique Retirer les parenthèses
sectioning - Formatting section titles Algebra II Calculators - eMathHelp Partial Fraction Decomposition Calculator Online calculator will find partial fraction decomposition of a rational function with steps shown. Factoring Calculator Calculator will try to factor any expression (polynomial, binomial, trinomial, quadratic, rational, irrational, exponential, trigonometric or mix of them) with steps shown. Equation Solver (Calculator) Calculator will find roots (exact and numerical, real and complex), i.e. solve for x, y or any other variable, of any equation (linear, quadratic, polynomial, rational, irrational, exponential, logarithmic, trigonometric, hyperbolic, absolute value) on a given interval. System of Equations Solver This solver (calculator) will try to solve system of 2, 3, 4, 5 equations of any kind, including polynomial, rational, irrational, exponential, logarithmic, trigonometric, hyperbolic, absolute value etc. Simplify Expression Calculator Inverse Function Calculator Calculator will find inverse of a given function with steps shown.