
Fondation Vasarely - Aix-en-Provence - Centre architectonique - France VICTOR VASARELY est un plasticien tout à fait singulier dans l’histoire de l’art du XXème siècle. Accédant à la notoriété de son vivant, il se distingue dans l’art contemporain par la création d’une nouvelle tendance : l’art optique. Son œuvre s’inscrit dans une grande cohérence, de l’évolution de son art graphique jusqu’à sa détermination pour promouvoir un art social, accessible à tous. Victor Vasarely naît à Pécs en Hongrie en 1906. En 1929, il entre au Muhëly, connu comme étant l’école du Bauhaus de Budapest. A cette époque, le gouvernement hongrois commence à associer les différents mouvements avant-gardistes au mouvement progressiste qui se développait en politique. Vers l’abstraction > Durant cette période graphique (1929-1946), Vasarely pose les fondements esthétiques de sa recherche plastique et « le répertoire de base de (sa) période cinétique abstraite en plan ». Entre 1935 et 1947, Vasarely redécouvre la peinture. Expérience cinétique > Le Père de l’Op art >
La chute d'eau d'Escher : le mouvement perpétuel en vidéo ! Je voulais évoquer dans cet article les liens entre les dessins d'Escher, la cristallographie et la topologie mais je suis tombé sur une vidéo plutôt bien faite qui m'a détourné de l'objectif initial. Je garde donc en réserve les vecteurs, les symétries, les atomes et les pavages de Penrose pour la prochaine fois ! La chute d'eau d'Escher Vous connaissez très probablement ce dessin où le graveur néerlandais, obsédé par les figures géométriques, les déformations et les boucles infinies, joue avec la perspective pour créer un cours d'eau perpétuel. Epicycles de Ptolémée Epicycles de Ptolémée Pour les grecs depuis Aristote (−385, −322) la Terre était le centre du Monde. Seul Aristarque de Samos (−310, −230) avait envisagé un système héliocentrique. La Terre est le centre du Monde et seuls sont possibles les mouvements rectilignes et circulaires uniformes étaient deux dogmes. Mais ces dogmes posaient aux observateurs du ciel un problème majeur : Comment expliquer les boucles des planètes ? Utilisation : La partie gauche du schéma représente dans le système héliocentrique le mouvement de la Terre (en bleu) et d'une planète hypothétique (en jaune) qui mettrait exactement trois années terrestre pour parcourir son orbite. Le slider rouge permet de modifier le rapport des vitesses de rotation entre l'épicycle et le déférent. Le slider vert permet de modifier le rayon de l'épicycle. Le bouton [Départ] permet de lancer l'animation la pause et la reprise de l'animation..
Parabolas are just the product of straight lines Parabolas are just the product of straight lines Create AccountorSign In «1x» «2x» «0.35x» «0.5x» powered by powered by functions $$π Create AccountorSign In to save your graphs! + New Blank Graph Examples Lines: Slope Intercept Form example Lines: Point Slope Form example Lines: Two Point Form example Parabolas: Standard Form example Parabolas: Vertex Form example Parabolas: Standard Form + Tangent example Trigonometry: Period and Amplitude example Trigonometry: Phase example Trigonometry: Wave Interference example Trigonometry: Unit Circle example Conic Sections: Circle example Conic Sections: Parabola and Focus example Conic Sections: Ellipse with Foci example Conic Sections: Hyperbola example Polar: Rose example Polar: Logarithmic Spiral example Polar: Limacon example Polar: Conic Sections example Parametric: Introduction example Parametric: Cycloid example Transformations: Translating a Function example Transformations: Scaling a Function example Transformations: Inverse of a Function example
Utiliser le mode polaire de la calculatrice. Taper... Coordonnées polaires Comme il s’agit d’un système bidimensionnel, chaque point est déterminé par ses deux coordonnées polaires, la coordonnée radiale et la coordonnée angulaire. La coordonnée radiale (souvent notée r ou ρ, et appelée rayon) exprime la distance du point à un point central appelé pôle (équivalent à l’origine des coordonnées cartésiennes). La coordonnée angulaire (également appelée angle polaire ou azimut, et souvent notée θ ou t) exprime la mesure, dans le sens trigonométrique (sens positif), de l’angle entre le point et la demi-droite d’angle 0°, appelée axe polaire[a]. Il existe plusieurs versions de l’introduction des coordonnées polaires comme système de coordonnées formel. Le terme actuel de coordonnées polaires a été attribué à Gregorio Fontana et a été utilisé par les écrivains italiens du XIIIe siècle. Par exemple, le point de coordonnées polaires (3 ; 60°) sera placé à trois unités de distance du pôle sur la demi-droite d’angle 60°. On peut aussi utiliser la fonction atan2 : s'écrit et
Tracés animés Tracés animés vous permet de tracer des courbes et des surfaces, en 2D ou 3D, qui peuvent se zoomer, se déformer et tourner dans tous les sens. Démonstration. Pour animer vos courbes et surfaces, il vous suffit d'utiliser un paramètre, s. Ce paramètre aura la valeur 0 au début d'une séquence d'animation. Ensuite il va augmenter régulièrement pour s'approcher de 1 à la fin de la séquence. Vous pouvez incorporer une fonction de s dans différents champs. Sous le mode expert (menu complet), vous pouvez aussi tracer simultanément plusieurs courbes et surfaces avec une animation synchronisée. Veuillez utiliser Polyray pour tracer des surfaces algébriques implicites. Les courbes paramétrées dans le plan peuvent aussi être tracées avec un point mouvant, en utilisant Points paramétrés. Autres traceuses animées : Vision 4D, Balai polynomial.