# Calculus Online Book

Related:  Calculusmath

Pauls Online Math Notes Lee Lady: Calculus for the Intelligent Person Teaching students how to use the concepts of the derivative and the integral is different from teaching them to understand the concepts. Understanding is certainly nice, and to some extent it's something that students feel a need for, but my main goal is for students to be able to use calculus in applications. This means, among other things, being able to have confidence in setting up formulas using derivatives and integrals. Abstract (in HTML). Article in PDF (Adobe Acrobat) format.DVI version of the article.Postscript version of the article.Slides for a brief talk on this article. These notes are an attempt to show how to express a given mathematical relationship in the form of an integral. However in practice, the evaluation of integrals has nothing to do with dividing areas into little vertical strips and taking Riemann sums. Further Notes on Applications of Integration (Click here for DVI version.) (Click here for postscript version.) (Click here for DVI version.) Max-Min Problems. f(x)

Dimensions Home A film for a wide audience! Nine chapters, two hours of maths, that take you gradually up to the fourth dimension. Mathematical vertigo guaranteed! Background information on every chapter: see "Details". Click on the image on the left to watch the trailer ! Free download and you can watch the films online! The film can also be ordered as a DVD. This film is being distributed under a Creative Commons license. Now with even more languages for the commentary and subtitles: Commentary in Arabic, English, French, German, Italian, Japanese, Spanish and Russian. Film produced by: Jos Leys (Graphics and animations) Étienne Ghys (Scenario and mathematics) Aurélien Alvarez (Realisation and post-production)

Differential Calculus Introduction: Simple Polynomial Equations | Decoded Science Polynomial Calculations: Image by blumik The Main Question in Differential Calculus “Differential calculus” is a big phrase but a very useful part of mathematics. Several previous articles have built a foundation, and now the first floor will be erected. The question that differential calculus asks is: What is the slope of a function at a given point? What Do “Slope” and “Function” Mean? To Define a Function: For this article, a function relates one variable to another; it is often written as “y = f(x)”. Again, for this article, the best way to think of a function is that it prescribes a line or curve graphed on a Cartesian plane. Three other necessary features of a function for calculus are “smooth” and “continuous” and “well defined”. A function: “y = x unless ‘x’ is negative; in that case y = -x” is not smooth. To Define Two Types of Slopes The “average slope” between two points is the vertical change divided by the horizontal change. The slope then is (y[2] – y[1])/(x[2] – x[1]). Pages: 1 2