background preloader

Quantum world record smashed

Quantum world record smashed
14-Nov-2013 [ Print | E-mail ] Share [ Close Window ] Contact: University of Oxford Press Officepress.office@admin.ox.ac.uk 44-186-528-3877University of Oxford A normally fragile quantum state has been shown to survive at room temperature for a world record 39 minutes, overcoming a key barrier towards building ultrafast quantum computers. An international team including Stephanie Simmons of Oxford University, UK, report in this week's Science a test performed by Mike Thewalt of Simon Fraser University, Canada, and colleagues. In the experiment the team raised the temperature of a system, in which information is encoded in the nuclei of phosphorus atoms in silicon, from -269 °C to 25 °C and demonstrated that the superposition states survived at this balmy temperature for 39 minutes – outside of silicon the previous record for such a state's survival at room temperature was around two seconds. There is still some work ahead before the team can carry out large-scale quantum computations.

Gravitational-wave finding causes 'spring cleaning' in physics Detlev van Ravenswaay/Science Photo Library Artist's rendering of 'bubble universes' within a greater multiverse — an idea that some experts say was bolstered with this week's discovery of gravitational waves. On 17 March, astronomer John Kovac of the Harvard-Smithsonian Center for Astrophysics presented long-awaited evidence of gravitational waves — ripples in the fabric of space — that originated from the Big Bang during a period of dramatic expansion known as inflation. By the time the Sun set that day in Cambridge, Massachusetts, the first paper detailing some of the discovery’s consequences had already been posted online1, by cosmologist David Marsh of the Perimeter Institute for Theoretical Physics in Waterloo, Canada, and his colleagues. Cosmologist Marc Kamionkowski of Johns Hopkins University in Baltimore, Maryland, agrees that some axion models no longer work, “because they require inflation to operate at a lower energy scale than the one indicated by BICEP2”. Linde agrees.

New Experiments to Pit Quantum Mechanics Against General Relativity It starts like a textbook physics experiment, with a ball attached to a spring. If a photon strikes the ball, the impact sets it oscillating very gently. But there’s a catch. Before reaching the ball, the photon encounters a half-silvered mirror, which reflects half of the light that strikes it and allows the other half to pass through. What happens next depends on which of two extremely well-tested but conflicting theories is correct: quantum mechanics or Einstein’s theory of general relativity; these describe the small- and large-scale properties of the universe, respectively. In a strange quantum mechanical effect called “superposition,” the photon simultaneously passes through and reflects backward off the mirror; it then both strikes and doesn’t strike the ball. But according to general relativity, gravity warps space and time around the ball. Knowing what happens to the ball could help physicists resolve the conflict between quantum mechanics and general relativity. Quantum Nature

Carver Mead's Spectator Interview From American Spectator, Sep/Oct2001, Vol. 34 Issue 7, p68 Carver Mead The Spectator Interview Once upon a time, Nobel Laureate leader of the last great generation of physicists, threw down the gauntlet to anyone rash enough to doubt the fundamental weirdness, the quark-boson-muon-strewn amusement park landscape of late 20th-century quantum physics. Carver Mead never has. As Gordon and Betty Moore Professor of Engineering and Applied Science at Caltech, Mead was Feynman's student, colleague and collaborator, as well as Silicon Valley's physicist in residence and leading intellectual. Perhaps more than any other man, Mead has spent his professional life working on intimate terms with matter at the atomic and subatomic levels. While pursuing these researches, Mead responded to a query from Intel-founder Gordon Moore about the possible size of microelectronic devices. Among whom was Albert Einstein.

New qubit control bodes well for future of quantum computing (Phys.org)—Yale University scientists have found a way to observe quantum information while preserving its integrity, an achievement that offers researchers greater control in the volatile realm of quantum mechanics and greatly improves the prospects of quantum computing. Quantum computers would be exponentially faster than the most powerful computers of today. "Our experiment is a dress rehearsal for a type of process essential for quantum computing," said Michel Devoret, the Frederick William Beinecke Professor of Applied Physics & Physics at Yale and principal investigator of research published Jan. 11 in the journal Science. In quantum systems, microscopic units called qubits represent information. The Yale physicists successfully devised a new, non-destructive measurement system for observing, tracking and documenting all changes in a qubit's state, thus preserving the qubit's informational value. "As long as you know what error process has occurred, you can correct," Devoret said.

New data confirms: Neutrinos are still traveling faster than light "It is worth pointing out, however, that the latest arXiv preprint lists 179 authors, while the original lists 174. Would you ever classify five people as "most of" 15? To make things more confusing . . . "four new people" have decided not to sign, according to Science. Now, none of the above numbers may match up . . .." The original 174 include a duplicate " F. The new 179 includes 10 new names that didn't appear on the old paper.

New Wormhole Theory Uses Space Photon Energy “Fluid” A new theory expands on other theories and adds photon energy “fluid” as a way to support wormholes. The introduction to the paper states the following. Wormholes are hypothetical geometrical structures connecting two universes or two distant parts of the same universe. For a simple visual explanation of a wormhole, consider spacetime visualized as a two-dimensional (2D) surface. If this surface is folded along a third dimension, it allows one to picture a wormhole “bridge”. [1] “A possible cause of the late-time cosmic acceleration is an exotic fluid with an equation of state lying within the phantom regime, i.e., w = p/ρ < −1. FIG. 1: The plot depicts the function H(x, a), for α = 1/2 and where the parameter x = r0/r, lying in the range 0 < x ≤ 1, has been defined in order to define the entire spacetime. By using this theory an advanced civilization would , in theory, be able to mine photon “fluid” for Phantom Energy to construct micro worm holes for such things as transportation. Related

Wormhole A wormhole, also known as an Einstein–Rosen bridge, is a hypothetical topological feature of spacetime that would fundamentally be a "shortcut" through spacetime. A wormhole is much like a tunnel with two ends each in separate points in spacetime. For a simplified notion of a wormhole, visualize space as a two-dimensional (2D) surface. In this case, a wormhole can be pictured as the 2D surface of a tube that connects different parts of the surface. The mouths of a wormhole are analogous to the holes at either end of the tube in a 2D plane. An actual wormhole would be analogous to this but with the spatial dimensions raised by one, which can be modeled mathematically even if we find it impossible to visualize. Researchers have no observational evidence for wormholes, but the equations of the theory of general relativity have valid solutions which contain wormholes. "Embedding diagram" of a Schwarzschild wormhole (see also below) Definition[edit] Schwarzschild wormholes[edit]

NASA Admits They Are Working To Travel Faster Than The Speed Of Light NASA is currently working on the first practical field test toward the possibility of faster than light travel. Traveling faster than light has always been attributed to science fiction, but that all changed when Harold White and his team at NASA started to work on and tweak the Alcubierre Drive. Special relativity may hold true, but to travel faster or at the speed of light we might not need a craft that can travel at that speed. The solution might be to place a craft within a space that is moving faster than the speed of light! Therefore the craft itself does not have to travel at the speed of light from it’s own type of propulsion system. It’s easier to think about if you think in terms of a flat escalator in an airport. What is the Alcubierre Drive? This type of concept was also recently illustrated by Mathematician James Hill and Barry Cox at the University of Adelaide. At the same time, we have to look at other factors that are now coming to light. Sources:

Quantum computing moves forward New technologies that exploit quantum behavior for computing and other applications are closer than ever to being realized due to recent advances, according to a review article published this week in the journal Science . These advances could enable the creation of immensely powerful computers as well as other applications, such as highly sensitive detectors capable of probing biological systems. "We are really excited about the possibilities of new semiconductor materials and new experimental systems that have become available in the last decade," said Jason Petta, one of the authors of the report and an associate professor of physics at Princeton University. Petta co-authored the article with David Awschalom of the University of Chicago, Lee Basset of the University of California-Santa Barbara, Andrew Dzurak of the University of New South Wales and Evelyn Hu of Harvard University. Two significant breakthroughs are enabling this forward progress, Petta said in an interview.

The Final 3 Card Trick Daydreaming Beyond the Solar System with Warp Field Mechanics This article was authored by Harold “Sonny” White and Catherine Ragin Williams Sure and is a submission of the Exotic Research Group of Icarus Interstellar. Sure, the Red Planet or an asteroid are enticing destinations, but what if one day we wanted to go really, really far out? With the technology we have today, it’s not in the realm of possibility. Enter: The space warp. Back in the 1970s, the British Interplanetary Society looked into what it would take to send a robotic probe to reach Barnard’s Star, about 6 light years (or 380,000 AU) away, within 50 years. The loopholes, amazingly, can be found in mathematical equations. By harnessing the physics of cosmic inflation, future spaceships crafted to satisfy the laws of these mathematical equations may actually be able to get somewhere unthinkably fast—and without adverse effects. When you think space warp, imagine raisins baking in bread. What about the colossal energy requirements discussed in the literature?

Related: