background preloader

Computers: Artificial Life: Artificial Worlds

Computers: Artificial Life: Artificial Worlds
Related:  Our FutureThe Singularity

The Emergence of Collective Intelligence | Ledface Blog ~Aristotle When we observe large schools of fish swimming, we might wonder who is choreographing that complex and sophisticated dance, in which thousands of individuals move in harmony as if they knew exactly what to do to produce the collective spectacle. So, what is “Emergence”? School of fishes dancing is an example of “emergence”, a process where new properties, behaviors, or complex patterns results of relatively simple rules and interactions. One can see emergence as some magic phenomena or just as a surprising result caused by the current inability of our reductionist mind to understand complex patterns. Humans can do it too We humans have even built artificial environments that allow for collective intelligence to express itself. Each and every actor in the financial markets has no significant control over or awareness of its inputs. Can we transpose it to other domains? Nobody can single-handedly create “collective intelligence”. Too remote of a possibility?

New solar fuel device that ”mimics plant life” Scientists have unveiled a prototype solar device that mimics plant life, turning the Sun’s energy into fuel. The device uses the Sun’s rays and a metal oxide called ceria to break down carbon dioxide or water into fuels, which can be stored and transported. The prototype, which has been devised by researchers in the US and Switzerland, uses a quartz window and cavity to concentrate sunlight into a cylinder lined with cerium oxide, also known as ceria. If as in the prototype, carbon dioxide and/or water are pumped into the vessel, the ceria will rapidly strip the oxygen from them as it cools, creating hydrogen and/or carbon monoxide. Hydrogen produced could be used to fuel hydrogen fuel cells in cars, for example, while a combination of hydrogen and carbon monoxide can be used to create “syngas” for fuel. It is this harnessing of ceria’s properties in the solar reactor, which represents the major breakthrough, said the inventors of the device. “It’s very much tied to policy.

Why are past, present, and future our only options? But things get awkward if you have a friend. (Use your imagination if necessary.) Low blow, Dr. Dave. Low blow... But seriously, I always figured if there was more than one dimension of time, that moving "left" or "right" would be the equivalent of moving to a parallel universe where things were slightly different. That is to say, maybe time really is 2 dimensional, but for all the reasons you mention, we're normally only aware of one of them—and for the most part, the same one that most of the people we meet are aware of. But take, say, a schizophrenic person—maybe they're tuned in differently; moving sideways through time instead of forward... or maybe moving through (and aware of) both simultaneously. They can't form coherent thoughts because they're constantly confronted with overlapping and shifting realities. I dunno... that's all just speculation, of course, but I find that thought fascinating.

Artificial life Artificial life (often abbreviated ALife or A-Life[1]) is a field of study and an associated art form which examine systems related to life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry.[2] The discipline was named by Christopher Langton, an American computer scientist, in 1986.[3] There are three main kinds of alife,[4] named for their approaches: soft,[5] from software; hard,[6] from hardware; and wet, from biochemistry. Artificial life imitates traditional biology by trying to recreate some aspects of biological phenomena.[7] The term "artificial intelligence" is often used to specifically refer to soft alife.[8] Overview[edit] Artificial life studies the logic of living systems in artificial environments in order to gain a deeper understanding of the complex information processing that defines such systems. Philosophy[edit] Organizations[edit] Software-based - "soft"[edit] Techniques[edit] Notable simulators[edit]

Music Styles As of July 1, 2013 ThinkQuest has been discontinued. We would like to thank everyone for being a part of the ThinkQuest global community: Students - For your limitless creativity and innovation, which inspires us all. Teachers - For your passion in guiding students on their quest. Partners - For your unwavering support and evangelism. Parents - For supporting the use of technology not only as an instrument of learning, but as a means of creating knowledge. We encourage everyone to continue to “Think, Create and Collaborate,” unleashing the power of technology to teach, share, and inspire. Best wishes, The Oracle Education Foundation SafeKids.com | Online safety & civility Nerve-Electronic Hybrid Could Meld Mind and Machine | Wired Science Nerve-cell tendrils readily thread their way through tiny semiconductor tubes, researchers find, forming a crisscrossed network like vines twining toward the sun. The discovery that offshoots from nascent mouse nerve cells explore the specially designed tubes could lead to tricks for studying nervous system diseases or testing the effects of potential drugs. Such a system may even bring researchers closer to brain-computer interfaces that seamlessly integrate artificial limbs or other prosthetic devices. “This is quite innovative and interesting,” says nanomaterials expert Nicholas Kotov of the University of Michigan in Ann Arbor. “There is a great need for interfaces between electronic and neuronal tissues.” To lay the groundwork for a nerve-electronic hybrid, graduate student Minrui Yu of the University of Wisconsin–Madison and his colleagues created tubes of layered silicon and germanium, materials that could insulate electric signals sent by a nerve cell. Images: Minrui Yu See Also:

Artificial Robotic Hand Transmits Feeling To Nerves Astro Teller has an unusual way of starting a new project: He tries to kill it. Teller is the head of X, formerly called Google X, the advanced technology lab of Alphabet. At X’s headquarters not far from the Googleplex in Mountain View, Calif., Teller leads a group of engineers, inventors, and designers devoted to futuristic “moonshot” projects like self-driving cars, delivery drones, and Internet-beaming balloons. To turn their wild ideas into reality, Teller and his team have developed a unique approach. It starts with trying to prove that whatever it is that you’re trying to do can’t be done—in other words, trying to kill your own idea. As Teller explains, “Instead of saying, ‘What’s most fun to do about this or what’s easiest to do first?’ The ideas that survive get additional rounds of scrutiny, and only a tiny fraction eventually becomes official projects; the proposals that are found to have an Achilles’ heel are discarded, and Xers quickly move on to their next idea.

Artificial intelligence AI research is highly technical and specialized, and is deeply divided into subfields that often fail to communicate with each other.[5] Some of the division is due to social and cultural factors: subfields have grown up around particular institutions and the work of individual researchers. AI research is also divided by several technical issues. Some subfields focus on the solution of specific problems. The central problems (or goals) of AI research include reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects.[6] General intelligence is still among the field's long-term goals.[7] Currently popular approaches include statistical methods, computational intelligence and traditional symbolic AI. The field was founded on the claim that a central property of humans, intelligence—the sapience of Homo sapiens—"can be so precisely described that a machine can be made to simulate it History[edit]

Related: