background preloader


High-quality graphene is strong, light, nearly transparent and an excellent conductor of heat and electricity. Its interactions with other materials and with light and its inherently two-dimensional nature produce unique properties, such as the bipolar transistor effect, ballistic transport of charges and large quantum oscillations. At the time of its isolation in 2004,[1] researchers studying carbon nanotubes were already familiar with graphene's composition, structure and properties, which had been calculated decades earlier. The combination of familiarity, extraordinary properties, surprising ease of isolation and unexpectedly high quality of the obtained graphene enabled a rapid increase in graphene research. Andre Geim and Konstantin Novoselov at the University of Manchester won the Nobel Prize in Physics in 2010 "for groundbreaking experiments regarding the two-dimensional material graphene".[2] Definition[edit] History[edit] The theory of graphene was first explored by P.

Related:  science fiction and future

Composting toilet Public composting toilet facility on E6 highway in Sweden A composting toilet is a dry toilet that uses a predominantly aerobic processing system that treats excreta, typically with no water or small volumes of flush water, via composting or managed aerobic decomposition.[1] Composting toilets may be used as an alternative to flush toilets in situations where there is no suitable water supply or waste treatment facility available or to capture nutrients in human excreta as humanure. They are in use in many of the roadside facilities in Sweden and in national parks in both the United States and the United Kingdom. The human excrement is normally mixed with sawdust, coconut coir or peat moss to support aerobic processing, absorb liquids, and to reduce the odor. The decomposition process is generally faster than the anaerobic decomposition used in wet sewage treatment systems such as septic tanks.

Aromaticity In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855.[1] There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds. Theory[edit] A better representation is that of the circular π bond (Armstrong's inner cycle), in which the electron density is evenly distributed through a π-bond above and below the ring. This model more correctly represents the location of electron density within the aromatic ring. The single bonds are formed with electrons in line between the carbon nuclei — these are called σ-bonds.

The 13 Most Important Numbers in the Universe - James D. Stein's Cosmic Numbers In the 17th century, scientists understood three phases of matter—solids, liquids and gases (the discovery of plasma, the fourth phase of matter, lay centuries in the future). Back then, solids and liquids were much harder to work with than gases because changes in solids and liquids were difficult to measure with the equipment of the time. So many experimentalists played around with gases to try to deduce fundamental physical laws. Robert Boyle was perhaps the first great experimentalist, and was responsible for what we now consider to be the essence of experimentation: vary one or more parameter, and see how other parameters change in response. It may seem obvious in retrospect, but hindsight, as the physicist Leo Szilard once remarked, is notably more accurate than foresight.

Graphene News Nov. 13, 2015 — Graphene is the first truly two-dimensional crystal, which was obtained experimentally and investigated regarding its unique chemical and physical properties. In 2010, two researchers were awarded ... read more Nov. 4, 2015 — By 'crumpling' to increase the surface area of graphene-gold nanostructures, researchers have improved the sensitivity of these materials, opening the door to novel opportunities in ... read more Nov. 2, 2015 — Scientists have developed ultrasensitive gas sensors based on the infusion of boron atoms into the tightly bound matrix of carbon atoms known as ... read more Carbon nanotube Rotating Carbon Nanotube Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1,[1] significantly larger than for any other material. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. In particular, owing to their extraordinary thermal conductivity and mechanical and electrical properties, carbon nanotubes find applications as additives to various structural materials.

Why Aren't Aliens Calling Earth? This article was originally published on The Conversation. The publication contributed this article to's Expert Voices: Op-Ed & Insights. We’ve been conditioned by television and movies to accept the likelihood of intelligent life elsewhere in the universe. “Of course there’s intelligent life out there; I saw it last week on Star Trek.” We’ve seen it all, from the cute and cuddly ET to the fanged monstrosity of Alien. Fullerene The discovery of fullerenes greatly expanded the number of known carbon allotropes, which until recently were limited to graphite, diamond, and amorphous carbon such as soot and charcoal. Buckyballs and buckytubes have been the subject of intense research, both for their unique chemistry and for their technological applications, especially in materials science, electronics, and nanotechnology. History[edit] The icosahedral fullerene C540, another member of the family of fullerenes. The icosahedral C60H60 cage was mentioned in 1965 as a possible topological structure.[6] Eiji Osawa of Toyohashi University of Technology predicted the existence of C60 in 1970.[7][8] He noticed that the structure of a corannulene molecule was a subset of a Association football shape, and he hypothesised that a full ball shape could also exist. Japanese scientific journals reported his idea, but it did not reach Europe or the Americas.

Vertical Farms Sprout into Reality NEW YORK — Seven billion humans need farms that cover a land mass equal to South America, but tomorrow's farmers may need even more space to grow food for hungry mouths. Such urgency has given root to a new agricultural idea in the past few years — building vertical farms that climb toward the sky or burrow beneath the Earth. Vertical farming got a big boost from a class taught by Dickson Despommier, a microbiologist and ecologist at Columbia University, in 1999. The students' ideas spread virally across the Internet and led to the rise of the first modern vertical farms in the U.S., South Korea, Japan and Singapore. Sweden has plans for a vertical farm skyscraper reaching 17 stories in height.

Related:  nanotechnologyFuture-watching