background preloader

La multiplication posée

La multiplication posée

Calcul mental Math Notebooking Marilyn Burns has written a concise article about the value of math journals. It's a wonderful introduction to the philosophy behind this instructional method. Basically, writing about math stimulates a different part of the brain than simply working the arithmetic alone. By using multiple parts of the brain during the learning process, the understanding is deepened and retention is increased. In fact, the more ways you can learn math (through art, music, drawing, writing for example) the more pathways you create in the mind. Those pathways then become a network of various avenues for the student to travel along in doing math problem solving. Also, writing about math may be a good lure for a reluctant writer who enjoys math. Amazingly, the process of writing and the process of mathematical problem solving have some similarities. Besides helping cement a child's learning, you, the teacher can find out if the child really understands the mathematical concept.

Calcul posé Math Cross Puzzles Archive Math Cross Puzzle # 2 Number Patterns Math Cross Puzzle # 3 Associative Property: (5 + 6) x 2 Math Cross Puzzle # 4 Review 1 Math Cross Puzzle # 5 Measurement (inches, feet, yards) Math Cross Puzzle # 6 Money (pennies, nickels, dimes, quarters, dollars) Math Cross Puzzle # 7 Addition, Subtraction, Multiplication & Money Math Cross Puzzle # 8 Measurement (ounces, pounds, tons) Math Cross Puzzle # 9 Review 3 Math Cross Puzzle # 10 Money (addition) Math Cross Puzzle # 11 Time (seconds, minutes, hours, days) Math Cross Puzzle # 12 Review 4 Math Cross Puzzle # 13 Place Value (thousands, hundreds); multiplication (by 2-digit numbers) Math Cross Puzzle # 14 Simple word problems Math Cross Puzzle # 15 Review 5 Math Cross Puzzle # 16 Rounding numbers (to nearest tens, hundreds) Math Cross Puzzle # 17 Review 6 Math Cross Puzzle # 18 Money (making change) Math Cross Puzzle # 19 Time (days, weeks, months, years); multiplication (by 3-digit numbers)

Cap Maths CM2 - Fort en clacul mental Multiplication Games This past Thursday night, my school held a "Family Math Night" where each grade level (Pre-K to 4th) created 3 to 4 different Math games (more like ideas) that parents could take home and utilize with their kids. Since I teach 4th Grade, our entire Math Night focused on Place Value to the 10ths and 100ths and Multiplication - memorization of the basic multiplication facts (which in Texas is 0-12...). The other Math teacher for 4th Grade and I really scrambled over this night - we fretted over what games to play. We wanted the games to be FUN and also a way for our students to play with their parents or siblings - a shared learning experience. We didn't just want to do single player games - the focus of the night was, after all, FAMILY Math Night. So, off we set until we came up with the following 4 actvities:1. Now, we cannot take credit for the inception of this game. Now, it is ABSOLUTELY important that you read the instructions. 2. What I love about this game?? 3. 1. 4. The game board:

65 Free Interactive Whiteboard Resources Interactive whiteboard resources are a great way for teachers to engage classrooms in learning. While many teachers are spending hours a day creating their own activities for their interactive whiteboards, there are tons of free sources to help teachers learn about and use IWBs with students to further their use of technology in the classroom. Here is a list of some great interactive whiteboard resources and activities guaranteed to stimulate learning: General Interactive Whiteboard Resources for Teachers TeacherLED – TeacherLED is a site dedicated to making the use of Interactive Whiteboards (IWB) easier and more productive. A few ways that you can stay and healthy fit this school year. Learning isn’t as one-way as we tend to think. Our goal-setting teaching strategies to pass along to your students. Our guide to purpose drivel learning, a classroom management technique you... A few classroom management suggestions that can help to reduce a child’s...

menu cycle 3 Un peu de géométrie : Les droites parallèles : de quoi s'agit-il. Les droites parallèles des méthodes de tracé variées Hauteurs d'un triangle: page 1, page 2, page 3 Le musée, une situation pour décrire triangles et autres polygones Le jeu du portrait Tracer des symétriques Quelques expériences à propos de l'angle droit. Vues du cube Tétraèdres et autres polyèdres Les maths des petits cubes Un solide à construire par assemblage Le maître dessine. Qu'est-ce qu'un angle ? A propos du périmètre, de l'aire et du volume : Le périmètre, qu'est-ce que c'est ? L'aire, qu'est-ce-que c'est ? Une situation où on transforme des figures pour mieux distinguer l'aire du périmètre. Une autre situation visant le même but Calculer des aires Convertir les mesures d'aires Calcul du volume d'un pavé droit Problèmes numériques : Comment éviter que résoudre un problème se réduise à deviner l'opération Comment aider un élève à résoudre un problème ? les problèmes de vie courante Fractions : Formulations et introduction Exercices

Numération-opérations Pourquoi, après le nombre 9, on écrit dix avec le chiffre 1 et le chiffre 0 (10) ? Pourquoi, après le nombre 9, on n'écrit pas dix avec le chiffre 0 et le chiffre 1 (01)? Pourquoi 10 (une dizaine et zéro unité) ne se dit pas dix zéro ? Pourquoi le nombre 584 (centaines, dizaines, unités) ne s'écrit pas 485 (unités, dizaines, centaines) ? Les signes "+", "-", "x" n'expliquent rien. Le chiffre de la retenue n'explique rien. Pourquoi 100 = 1 ?

La table d'addition Pour commencer, une table d’addition vierge puis deux tables complètes, de 0 à 10 et de 0 à 20. Les cases des tables complétées mesurent 1,5 cm. J’utilise des cadres mobiles avec une fenêtre de cette largeur pour aider ceux qui ont du mal à se repérer. Un cadre pour les lignes et un pour les colonnes : la case entourée est la solution. Autre solution : glisser la table dans une pochette transparente et utiliser les feutres à ardoise pour tracer les "chemins". Je vous propose également quelques exercices que j’utilise avec la table. Nouveauté 2011 : Un envoi de Fabien Berranger : C’est une roue masquée à imprimer sur du bristol, pour l’apprentissage ludique des tables d’addition (ou de multiplication). Pensez aussi à mon Générateur de cocottes... !

fractions Learning Intention: Students will understand that there are many different ways to express the concept of ‘part of a whole’. Success criteria: Each student will produce a poster that demonstrates eight different ways to express a certain fraction, chosen by the distribution of individual fraction cards. We will use these cards and our ‘Fraction Walls’ to demonstrate adding, subtracting, multiplying and dividing fractions. Each student will recieve a card with a fraction and create a poster that shows this fraction eight different ways (as above for one half). When you have finished, place your poster on the number line in the room. The next task is to go to Mathletics and do the required tasks. When you have finished, you can go to the following sites: BBC Skillswise – Fractions and Percentages BBC Bitesize – Fractions, Decimals and Percentages Interactive Maths Games and Activities Five Fraction activities and two Percentages activities at the National Library of Virtual Manipulatives

Tessellations Tessellations are all around us! A tile floor is a good example. Encourage your students to find other tessellating patterns in the world around them. Then make your own tessellations inspired by artist M.C. Escher. (Don’t be afraid to try these… they are much easier than they look!) First, some helpful vocabulary:M.C. Directions: 1. 2. 5. Below is an example of a more basic tessellation done with first graders, where the shape was cut from one side of the card only. Do-It-Yourself dallages - Tracing Paper Méthode Click on the pictures to see larger versions with better explanations. A parallelogram is a 4-sided figure. In a parallelogram, opposite sides and opposite angles are equal sizes (congruent), and opposite sides are parallel. A translation tessellation, also called a slide translation, gets its symmetry by simply sssssliding the outline of one edge along to a new position on the opposite side of the tile, without turning the edge or flipping it over. This project works with any rhomboid. In it, you can make a tessellation that has translational (slide) symmetry. Teachers: It's probably best to go through one with the entire class watching, then give each student a print-out of the lesson & let them work alone-- with you wandering around giving person-to-person assistance & encouragement. Do you want to download printable, freely shareable Adobe Acrobat (*.PDF) or JPEG (*.JPG) versions of this complete tutorial? page 1 of 2 (2.5mb) page 2 of 2 (2.5mb) page 1 of 2 (104kb) page 2 of 2 (130kb)

Related: