background preloader

Construction géométrique du nombre d'or

Construction géométrique du nombre d'or
Related:  Le nombre d'or et la composition d'un tableau

Homme de vitruve: Léonard de Vinci « [...] que la Nature a distribué les mesures du corps humain comme ceci. Quatre doigts font une paume, et quatre paumes font un pied, six paumes font une coudée : quatre coudées font la hauteur d’un homme. Et quatre coudées font un double pas, et vingt quatre paumes font un homme ; et il a utilisé ces mesures dans ses constructions. Si vous ouvrez les jambes de façon à abaisser votre hauteur d’un quatorzième, et si vous étendez vos bras de façon que le bout de vos doigts soit au niveau du sommet de votre tête, vous devez savoir que le centre de vos membres étendus sera au nombril, et que l’espace entre vos jambes sera un triangle équilatéral. La longueur des bras étendus d’un homme est égale à sa hauteur. Depuis la racine des cheveux jusqu’au bas du menton, il y a un dixième de la hauteur d’un homme. Depuis les tétons jusqu’au sommet de la tête, un quart de la hauteur de l’homme. La main complète est un dixième de l’homme.

Le nombre d'or (Vitruve, architecte romain 1er siècle avant notre ère). Ainsi si a et b sont les deux grandeurs alors nous aurons : a/b = (a + b) / a. a/b = 1 + b/a pour simplifier, prenons comme variable x = a/b. alors nous obtenons : x = 1 + 1/x x - 1 - 1/x = 0 comme x non nul, nous obtenons l'équation suivante que nous noterons (E) : x2 - x - 1 = 0 qui admet comme racine positive : x = que nous notons Φ et vaut à peu près 1,618... C'est cette valeur qui est appelée le nombre d'or (dit Φ (phi) en hommage au sculpteur grec Phidias qui s'en servit dans les proportions du Parthénon à Athènes. A ce stade, je vous soumets un petit problème que m'a proposé Dominique Payeur : Je dispose d'un capital. Nous pouvons d'ores et déjà noter quelques résultats : On pourrait aussi sans équation du second degré montrer que 1/Φ = Φ - 1. Des équations précédentes, nous pouvons déduire : x2 = x + 1 et x = 1 + 1/x d'où et on a aussi : Le nombre d’or peut s’écrire à l’aide d’une infinité de radicaux emboîtés Les FRACTIONS

nombre d'or Le nombre d’or existe. Il s’agit de la proportion selon laquelle le rapport entre deux parties est égal au rapport entre la plus grande de ces parties et le tout. C’est un nombre irrationnel : (1 + √5) / 2. Je renvoie à l'article "nombre d'or" de wikipédia ou au Que sais-je ? Car, de ce nombre, bien des usages sont faits qui sortent de la mathématique. Le nombre d’or dans l’art et l’architecture. Les premiers lieux communs concernent l’art et notamment l’architecture : il y en a cinq principaux. Il importe aussi d'être précis. 1) Les pyramides. Sur la quarantaine de pyramides royales égyptiennes recensées, près de trente sont pyramidales. Sous l’Ancien Empire, de la fin de la troisième dynastie à la fin de la 6e, on en connaît seize. La seconde génération de pyramides est érigée sous la douzième dynastie, au Moyen Empire. La dernière pyramide où on trouve le nombre d’or date d'environ 2500 avant l’ère chrétienne. 2) Le temple de Jérusalem. On fait un saut 1500 ans plus tard. Ah ! 4.

Le nombre d'or L' histoire ... Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or (temple d'Andros découvert sous la mer des Bahamas). 2800 av JC : La pyramide de Khéops a des dimensions qui mettent en évidence l'importance que son architecte attachait au nombre d'or. Vè siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d'or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d'Athéna Parthénos . Il utilise également la racine carrée de 5 comme rapport. IIIè siècle avant J-C. : Euclide évoque le partage d'un segment en "extrême et moyenne raison" dans le livre VI des Eléments. 1498 : Fra Luca Pacioli, un moine professeur de mathématiques, écrit De divina proportione ("La divine proportion"). Au cours du XXème siècle : des peintres tels Dali et Picasso, ainsi que des architectes comme Le Corbusier, eurent recours au nombre d'or.

Le nombre d'or dans l'architecture grecque : mythe ou réalité ? Filles des nombres d’or, Fortes des lois du ciel, Sur nous tombe et s’endort, Un Dieu couleur de miel. Paul Valéry, « Cantique des Colonnes ». Le nombre d’or est un nombre égal à (1+√5)/2, soit environ 1,618 et correspond à une proportion considérée comme particulièrement esthétique. Il apparaît dans la pensée grecque avec Pythagore, au tournant du VIème et du Vème siècle avant J.-C. mais Euclide, dans ses Eléments, est le premier à développer une théorie de ce nombre dans le passage où il tente de définir la façon la plus logique de couper harmonieusement un segment en deux parties inégales. Cette proportion, pour de nombreux artistes comme Léonard de Vinci ou encore Le Corbusier -pour ne citer que les plus célèbres-, donnerait la clef de l’harmonie d’une œuvre d’art. Mais dans quelle mesure n’y a-t-il pas là un mythe architectural ? Quelques propriétés mathématiques La section d’or La célèbre suite de Fibonacci, mathématicien du XIIIème siècle, entretient des liens étroits avec φ. P.

La composition et le nombre d'or construction composition,esquisse,regard,accrochage oeuvre,nombre d’or,composition artistique, Nombre d’or ou Phi Utilisé depuis la nuit des temps [1], dans l’architecture [2] comme dans les œuvres d’arts [3], le nombre d’or est parfois contesté. Sa rigueur mathématique, son modulor et son coté "utopique" lèvent bien des boucliers. La construction d’une composition : L’orientation de votre toile/papier est à étudier en premier lieu. Le regard et la composition : Le regard doit-il se porter sur un élément particulier du dessin ou de la peinture ? Construction d’un rectangle d’or Voyez la figure à gauche et en haut pour construire un rectangle d’or : Tracez un carré, du centre d’un des cotés (marqué C) et tracez un arc de cercle passant par un angle opposé. Figure du centre : Reportez la petite longueur sur le petit coté du rectangle. Une esquisse pour vérifier la composition : Imaginez vos sujets sous formes de volumes géométriques simples. L’accrochage de l’œuvre :

Phi - Le Nombre d'Or - La Divine Porportion - l'ADN Divin Les Romains, les Grecs, les Juifs et les Egyptiens semblaient tous d'accord : 1,618 était le nombre d'or, le nombre de l'harmonie universelle, le nombre de la création, le nombre de Dieu, le Créateur. Lle nombre utilisé partout dans l'ordre caché de la Création et qu'il fallait donc employer dans les édifices dédiés au Créateur afin de s'en rapprocher. Empreint de mystère, objet d'un culte tantôt religieux, tantôt magique, le nombre d'or influence la vision occidentale de l'harmonie. Chez les Grecs, avec le développement de la géométrie, la secte secrète des pythagoriciens en avait fait un symbole d'harmonie universelle, de vie, d'amour et de beauté. Au Moyen-Age, les savants, les pères de l'église, les bâtisseurs, les maîtres d'ouvrages ou maîtres d'oeuvre, se réclament de la doctrine platonicienne des corps cosmiques, les cinq polyèdres réguliers, et ont fait du nombre d'or, "la divine proportion", un modèle de perfection esthétique et philosophique." Le nombre d'Or est appelé Phi

Le nombre d'or dans la peinture, l'architecture et la nature De nos jours, nous pouvons dire qu’il existe deux types de nature : la nature végétale et la nature animal. En les examinant de plus près nous pouvons remarquer que toutes deux peuvent présenter la suite de Fibonacci ainsi que les proportions d’Euclide. De ce fait, nous pouvons dire que le nombre d’or est présent partout dans la nature. La suite de Fibonacci fut créée par un célèbre mathématicien italien : Leonardo Fibonacci au XII ème siècle. Cette suite commence par 0 et 1 (ses deux premiers termes). A partir du rang numéro 2, il suffit d’additionner les deux termes précédents afin de trouver les termes suivants. A travers cette démonstration, nous allons prouver le lien existant entre la suite de Fibonacci et le nombre d’or. Nous avons vu précédemment que la suite de Fibonacci était définie à partir de 0 et 1. Nous pouvons alors poser la relation suivante avec n appartenant à l'ensemble d'entiers naturels (grâce à la définition de la suite de fibonacci exprimé ci-dessus) : Δ= b²- 4ac

Related: