background preloader

De quoi l'énergie est-elle le nom ?

De quoi l'énergie est-elle le nom ?

http://www.youtube.com/watch?v=Nb2S7oge8TQ

Related:  PHYSIQUE

Le temps et sa flèche Texte de la 188e conférence de l’Université de tous les savoirs donnée le 6 juillet 2000. Le temps, son cours et sa flèche par Etienne KLEIN Un peu de poésie pour commencer C'est à un physicien britannique, Arthur Eddington, que le temps doit d'être équipé (depuis 1929) d'un emblème, la flèche, que la mythologie attribuait jusque-là à Éros, le dieu de l'amour, représenté comme un enfant fessu et ailé qui blesse les cœurs de ses flèches aiguisées. La flèche du temps ne symbolise plus le désir amoureux, hélas, mais le sentiment tragique que nous éprouvons tous d'une fuite inexorable du temps.

Spin (propriété quantique) Un article de Wikipédia, l'encyclopédie libre. Le spin est, en physique quantique, une des propriétés des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Muon Un article de Wikipédia, l'encyclopédie libre. Tout comme pour le cas des électrons, il existe un neutrino muonique qui est associé au muon. Les neutrinos muoniques sont notés par νμ. Les muons positifs peuvent former une particule appelée le muonium, ou μ+e–. À cause de la différence de masse entre le muon et l'électron, le muonium ressemble plus à un atome d'hydrogène que le positronium. Histoire[modifier | modifier le code]

Gluon Un article de Wikipédia, l'encyclopédie libre. Le gluon est le boson responsable de l'interaction forte. Les gluons confinent les quarks ensemble en les liant très fortement. Ils permettent ainsi l'existence des protons et des neutrons, ainsi que des autres hadrons et donc de l'univers que nous connaissons. Caractéristiques de charge et masse des gluons[modifier | modifier le code] Leur masse est probablement nulle (quoiqu'il n'est pas exclu qu'ils puissent avoir une masse de quelques MeV)Leur charge électrique est nulleIls ne possèdent qu'un spin 1.Chaque gluon porte une charge de couleur (rouge, vert ou bleu, comme les quarks) et une anti-charge de couleur (comme les anti-quarks).

Boson Un article de Wikipédia, l'encyclopédie libre. Photons émis dans le faisceau cohérent d'un laser. Le fait qu'une particule soit un boson ou un fermion a d'importantes conséquences sur les propriétés statistiques observables en présence d'un grand nombre de particules : les fermions sont des particules qui obéissent à la statistique de Fermi-Dirac alors que les bosons obéissent à la statistique de Bose-Einstein. Dans le cas des bosons, cette statistique implique une transition de phase à basse température, responsable notamment de la superfluidité de l'hélium ou de la supraconductivité de certains matériaux. Plus généralement, les bosons montrent une tendance à s'agréger lors des processus d'interaction entre les particules, comme lors de l'émission stimulée de lumière qui donne lieu au laser. Historique[modifier | modifier le code]

Hadron Un article de Wikipédia, l'encyclopédie libre. Les particules constituant un hadron sont appelées de manière générique partons. Les quarks (ou antiquarks) présents dans le hadron tout le long de son existence sont appelés quarks de valence, à l'opposé des particules (paires quark-antiquark et gluons) qui apparaissent et disparaissent en permanence dans le hadron, du fait de la mécanique quantique, et qui sont appelées particules virtuelles. Quark Un article de Wikipédia, l'encyclopédie libre. Description[modifier | modifier le code] La théorie des quarks a été formulée par le physicien Murray Gell-Mann, qui s'est vu attribuer le prix Nobel de physique en 1969. Le terme "quark" provient d'une phrase du roman Finnegans Wake de James Joyce : « Three Quarks for Muster Mark !

Photon Un article de Wikipédia, l'encyclopédie libre. Le photon est la particule associée aux ondes électromagnétiques, des ondes radio aux rayons gamma en passant par la lumière visible. L'idée d'une quantification de l'énergie transportée par la lumière a été développée par Albert Einstein en 1905, à partir de l'étude du rayonnement du corps noir par Max Planck, pour expliquer des observations expérimentales qui ne pouvaient être comprises dans le cadre d’un modèle ondulatoire classique de la lumière, mais aussi par souci de cohérence théorique entre la physique statistique et la physique ondulatoire[4].

Spin Spin is the amount of rotation an object has, taking into account its mass and shape. This is also known as an object’s angular momentum. All objects have some amount of angular momentum. A spinning coin has a little angular momentum; the moon orbiting the earth has a lot. Like energy, angular momentum is a conserved quantity: The total amount is constant, though it can flow from one object to another. When a spinning figure skater contracts her arms and rotates faster, her angular momentum is unchanged because a narrow object rotating quickly has the same angular momentum as a wide object rotating slowly. Intrication quantique Un article de Wikipédia, l'encyclopédie libre. Historique[modifier | modifier le code] Le caractère surprenant des états intriqués a pour la première fois été souligné par Einstein, Podolsky et Rosen dans un article de 1935 qui tentait de montrer que la mécanique quantique était incomplète. Dans cet article, les auteurs décrivent une expérience de pensée qui restera connue comme le paradoxe EPR. Définition[modifier | modifier le code] Il est plus aisé de définir ce qu'est un état non intriqué, ou séparable, que de définir directement ce qu'est un état intriqué.

Related:  Klein, Etiennesucre19